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At the end of any crystallographic refinement, it is always appropriate to examine 
the residual electron density, to ensure that the applied model adequately 
describes all the information present in the experimentally measured structure 
factors F(H)obs. 
 
 The residual electron density ∆ρ(r) is defined as : 
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The experimental amplitudes for F(H)obs are used in the Fourier summation, but 
the phases ϕ(calc) are necessarily taken from the model. It is common practise to 
report just the extremes of the function ∆ρ(r) over the whole unit cell (or if 
symmetry allows, a symmetry-unique sub-space of the unit cell). However the 
residual density should provide more information regarding the crystallographic 
analysis than just these two single numbers. 
 
The experimentally determined residual density contains all the errors of the 
crystallographic experiment, from all sources, including (but not exclusively so) 
(i) all errors in the measured structure factor amplitudes, due to crystal defects 
(twinning, disorder), instrumental errors and misalignments, data processing errors 
including integration, absorption, extinction and thermal diffuse scattering errors. 
(ii) all model errors and inadequacies, such as scattering factors (spherical or 
aspherical), treatment of thermal motion, etc. 
(iii) errors in the computation of equation (1), such as Fourier truncation errors, 
inadequate sampling etc. 
 
The program PIXELstats provides a number of statistical descriptors of the 
complete residual density function, which should be of diagnostic utility in 
deciding whether the applied model is appropriate.  The program reads the grid 
files produced by the WinGX Fourier programs SLANT-PLANE and FFT, as well as 
XD grid files from XDFOUR or XDFFT. These should be difference Fourier 3D grid 
files, computed over the whole unit cell (this is automatically done in the case of 
the FFT algorithm). Some care should be taken to ensure that the computed map is 
sufficiently accurate, particularly : 
(i) the digital resolution of the map (i.e. the separation between grid points) 
should be sufficiently fine to satisfy the Nyquist-Shannon sampling condition [1]. A 
grid sampling of at least 1/2 that of the d-spacing resolution of the measured 
structure factors is necessary to avoid aliasing errors, and it is better to err on the 
side of caution. So if the resolution of the data is 0.6 Å, it is advisable to use a grid 
spacing of 0.2 Å or smaller along all axes. Once the Shannon limit has been reached 
however, there is no further advantage in reducing the grid size. 
 
The program PIXELstats plots the binned distribution of the values of the pixels in 
the grid-file, and computes standard statistical descriptors, including the 
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population mean µ, the population  standard deviation σ, the sample skewness µ3 
and the kurtosis µ4 
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For a correctly calculated difference Fourier map, computed over the entire unit 
cell, the population mean should be exactly zero, regardless of any errors present 
in the data or model. Both the XDFOUR and XDFFT programs as well as FFT in 
WinGX give means which are normally < 10-10, indicating this condition is met 
satisfactorily. Moreover, unless the contribution of F(000) is included, any type of 
Fourier map computed over the entire unit cell will have a mean of zero. 
 

 
 
As well as showing the pixel distribution, PIXELstats also displays the (normalised) 
normal (Gaussian) distribution, corresponding to the computed sample µ and σ [(2) 
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and (3)], in red. In the ideal case, where all features of the density have been 
modelled (apart from the random noise in the data), then the pixel distribution 
should correspond to a normal distribution. If this situation pertains, then it can be 
said that the data contains no further information than is implied by the model. Of 
course, since a model may incorporate physically non-meaningful features, this 
condition can never be a sufficient condition for a satisfactory crystallographic 
refinement, but can be construed as a necessary one. 
 

 
 
In all experimental difference maps examined so far, it is observed that tails, out 
with the normal distribution are observed. However, the integrated electron 
population in these regions is normally very low, especially for those pixels at the 
extremes of the distribution, and their significance may be questionable. It is 
generally easier to examine these tails by plotting the log(population density), as 
shown above. A right mouse press at any position to the right of the central zero 
line will show the integrated electron population in excess of a normal 
distribution, from that point onwards, to the end of the distribution (a similar 
mouse press to the left of the zero line shows the same, but to the start of the 
distribution). 
 
There are several standard statistical tests that can be used to quantify how close 
an actual distribution is to a normal distribution. Two of the best known are the χ2 
test and the Kolmogorov-Smirnov test. Both of these are implemented in 
PIXELstats, but are of limited use, since the sample size (i.e. the number of 
pixels) is generally extremely large, typically 0.5 - 1.5 Mpixels, and because of this, 
both methods typically estimate a zero probability for a normal distribution. 
Another visual method is the so-called normal-probability plot of Abrahams and 
Keve [2]. The deviations of the experimental cumulative distribution are compared 
with the (expected) normal distribution. In the ideal case of a perfect normal 
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distribution, all points should lie on the line with slope = 1, with a zero intercept. 
Deviations of the experimental points from this line show how well the 
approximation to a normal distribution is achieved. It should be noted that the test 
is very sensitive in the tail regions away from the central zone, since a normal 
(Gaussian) distribution rapidly falls to extremely low probabilities. In addition, as 
emphasised above, the density of points in these regions is very low, and their 
significance should not be overestimated. The plot illustrated below shows in fact 
an exceptionally good agreement for a normal distribution, apart from a minor 
disagreement for residual densities greater than 0.3eÅ-3 
 

 
 

Fractal Dimension 

 
The Minkowski-Bouligand fractal dimension of the residual iso-density surface at a 
constant value x is defined as 
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This function has been proposed by Meindl & Henn [3] as a pertinent characteristic 
of the residual density distribution. Expression (6) is evaluated in PIXELstats using 
a modified box-counting algorithm, where ε is the characteristic length of the box 
used. This length ε is effectively a scaling factor, to give a maximum value for df of 
3.0 for a 3-dimensional map and 2.0 for a 2-dimensional map. The fractal 
dimension plot visually provides essentially the same information as the 
log(probability density) distribution plots, and an ideal normal distribution appears 
as a paraboloidal curve. 
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Shannon Information Entropy 

 
The Shannon Information Entropy H(x)  [4]  of a distribution is given by 

)(log)()(
1

ib

n

i

i xpxpxH ∑
=

−=         (7) 

It provides a measure of the information content of the distribution, and is here 
used as a simple figure of merit to describe and compare the experimentally 
observed pixel distribution with the assumed normal distribution (based on the 
mean µ and standard deviation σ of the experimental distribution). The p(xi) used 
in (7) above are the normalised probabilities for the observed distribution in each 
bin and the corresponding normalised Gaussian probabilities for that bin. The base 
b of the logarithm used in PIXELstats is 10. The R(Shannon) index quantifies the 
comparison, and  is defined as 

)(

)}()({100
)(

NormalH

NormalHExptH
ShannonR

−×
=  

Typically, good fits have absolute values of R(Shannon) indices less than 0.1% 
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