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Normal probability plot analysis is applied to independent sets of crystallographic structure factor 
measurements (F) and the derived coordinates (p). Differences between corresponding pairs of struc- 
ture factors (AF) in the two sets are examined in terms of their pooled standard deviations (oF) by 
plotting the ordered statistic tim = AF/aF against the expected normal distribution. Differences between 
pairs of coordinates (zip) are similarly examined in a f p =  Ap/ap half-normal probability plot. Both 
plots result in linear arrays of unit slope and zero intercept, for normal error distribution in the experi- 
ment and the model and correctly assigned standard deviations. Analysis of departures from this ideal, 
especially when both plots are considered together, provides detailed information of the kinds of error 
in fm and in fp. By inference, the kinds of error in F and trF as well as in p and ap can be deduced. The 
normal probability plot fiR= IFmeasl- IFeaael/aFmeas should ideally also be linear, with unit slope and 
zero intercept. Deviations from ideal provide considerably more information than the conventional 
R values. Analysis of fiR in combination with fm plots allows further specification of the error distribu- 
tion. Examples using these plots are given and discussed, based both on real and on simulated data. 

Introduction 

The association of a given measured quantity with a 
reliable estimate of the uncertainties in that quantity 
is of fundamental importance. The uncertainties in 
derived quantities, however, have often been given 
greater importance than those assigned to observed 
quantities. Propagation of error theory shows that 
estimates of these two kinds of uncertainty, later re- 
ferred to as the derived and the assigned standard 
deviations respectively, are functionally related (for a 
discussion, see Birge, 1939). The additional dependence 
of the least-squares refined parameters on the weights 
of the observations, obtained from the assigned stan- 
dard deviations, was implied by Gauss (1809). The 
assigned standard deviations are therefore critical, and 
should be estimated with care. Both these uncertainties 
should be capable of satisfying stringent post facto 
tests for validity. 

The increasing use in structural crystallography of 
diffractometers to measure structure factors (Fracas) 
has stimulated attempts at assigning experimental stan- 
dard deviations (aFmeas) to these quantities. Thus, 

* Present address: Mullard Research Laboratories, Redhill, 
Surrey, England. 

Busing & Levy (1957) proposed an expression for 
aFmeas that included both counting statistics and an 
empirical term proportional to the net count in the 
reflection. Similar proposals have subsequently been 
made by others. An objective assessment of o'Fmeas on 
the same scale as the Fracas is, however, possible only 
from the sum of all the independent variances entering 
the measurement. A method for evaluating these vari- 
ances has been given (Abrahams, 1964). The assigned 
aFmeas magnitudes are shown by model-dependent in- 
dicators to be close to their absolute scale (Abrahams, 
1969). 

In any model-independent procedure for testing the 
assigned standard deviations, it is necessary to measure 
at least two independent sets of Fmeas. The availability 
of two independent data sets, which need not be com- 
plete, allows the validity both of the derived as well 
as the assigned standard deviations to be tested by 
methods developed below. In addition, duplicate meas- 
surements on two different crystals of the material 
under study considerably increase the chances that the 
crystallographic results reported are indeed typical of 
that material. 

The results from a recent structural investigation 
(Keve, Abrahams & Bernstein, 1970), and a parallel 
simulated case, are used as examples to illustrate the 
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test procedures both on the assigned aFmeas and on the 
derived ap~, where p~ is the ith parameter obtained in 
a least-squares fit to a theoretical model. 

The probability plot 

The distribution of any set of magnitudes may be 
compared with any assumed distribution in a proba- 
bility plot. Consider the quantities F(1)i, F(2)i each of 
which is an independent measure of the same ith 
structure factor, obtained in two separate experiments. 
Let us assign standard deviations aF(1)~ and aF(2)i 
to these quantities. The statistic &n~ is defined as 

6mi=[F(1)i-KF(2)d/[a2F(1)~+ K2aZF(2)i] 112 (1) 

where K is a scale factor between the two sets of 
measurements such that 

J 
(6mi) z = a minimum (2) 

i = 1  

and there is a total o f j  structure factors. The distribu- 
tion of the Omi is Gaussian if the F(1)i, F(2)i contain 
only random error and if the aF(l)~, aF(2)l are correct• 
In general, this ideal is not met and deviations can be 
examined with great sensitivity by means of the proba- 
bility plot. In constructing the normal probability plot 
the collection of Jm, is rearranged in order of increas- 
ing magnitude, i.e. as order statistics. If these order 
statistics are plotted against x,, the values (quantiles) 
expected for a normal distribution, the resulting proba- 
bility plot will be a straight line of slope 1 that passes 
through the origin. Values of x~ are readily obtained 
from the normal probability function 

1 exp{_ez/2}dc ~ (3) 

The ith value of P(x) for the j-ordered statistics is 
given by [ ( j - 2 i +  1)/j[. The sign of x is positive for 
i > j/2, negative for i < j/2. A convenient tabulation of 
P(x) is found in the National Bureau of Standards' 
Tables of  Normal Probability Functions (1953).* 

The probability plot is entirely general, and any 
basis distribution may be chosen, such as exponential 
or gamma: if the measured distribution of am~ is 
identical to that chosen, the resulting plot will remain 
linear with a slope of unity and zero intercept. Normal 
distributions only are considered here. A general dis- 
cussion of probability plotting methods for data anal- 
ysis has been given by Wilk & Gnanadesikan (1968). 

The information revealed by a normal probability 
plot displaying all the arn~ simultaneously considerably 
extends that contained in the simple interexperimental 
agreement factor 

* For example, with j=254, the extreme 6mi with i= 1 and 
254 have P(xh=253/254, xl=-2.883 and P(x)254_253/254, 
xzs4 = 2.883 : the next pair of Jm~ with i= 2 or 253 have P(x)2,253 
=251/254 and x2.253 = -Y-2-518, etc. 

J J 
Rl,2 ----- ~ [F(1)i-  KF(2)i]/ ~ [F(])i + KF(2)d/2 

i = 1  i = 1  

or that in an examination only of the largest ith 
individual differences. 

Properties of the normal probability plot of tim 

The normal probability plot is sensitive to individual 
6m~ containing gross error, and results in such points 
lying far from the ideal linear distribution. The ranking 
process in forming order statistics necessarily places 
the largest Jmi at the extremes of the array. The density 
of points on this array, projected on the observation 
axis, represents the distribution of the &n~. Hence, in 
judging a normal probability plot for linearity and 
slope as is discussed later, it is important to give 
greatest weight to the central portion, containing the 
majority of the data, and least to the sparsely popu- 
lated outermost portion of the array. Departure of an 
individual &n~ from the remainder of the array is less 
important than overall trends. The significance of such 
departure may be found by standard means, such as 
the 2 '2 test. 

A linear normal probability plot with slope different 
from unity may be an indication of uniform misestima- 
tion in am~. Thus a slope of 0.25 would be obtained 
with data for which the assigned standard deviations 
were too large, on average, by a factor of 4. A linear 
normal probability plot based on a value of K derived 
from equation (2) should have zero intercept. 

Numerous plots of quantiles of a wide variety of 
probability distributions against quantiles of normal, 
uniform, and exponential probability functions have 
been computed by Chambers & Fowlkes (1967). In 
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Fig. 1. Normal probability plot of 254 simulated Jmi [equation 
(1)] with normally distributed random error. For one set, 
the error is 0.05 Fev, for the other it is 0-04 Fee. 
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general, although various concave-convex, convex, and 
convex-concave shaped probability plots may be ob- 
tained, a true match of distributions gives a function 
clearly recognizable as linear. 

Simulated example and resulting normal 
probability plot of tim 

As a standard with which the real example given below 
may be judged, two sets of measured structure factors 
containing random error only are considered in the 
simulated example of this section. Let: 

F(1)R=FEF+ N1. crxfa (4) 
and 

F(2)R=FEF+ Nz . azFR . (5) 

The values of FEE are derived from the final atomic 
position coordinates and temperature coefficients of 
BaCoF4 (Keve, Abrahams & Bernstein, 1970), using 
the atomic scattering factors and dispersion corrections 
of that paper, as error free magnitudes. N~ and N2 are 
two sets of computer generated (Chambers, 1968) 
random standard normal deviates. The assumed stan- 
dard deviations due to random error alone are a~FR 
=0.05 FEE, a2FR =0.04 FEF. The resulting interexperi- 
mental agreement factor is 0.049, close to the expected 
value. 

In this simulated example, it is instructive to note 
that the Jmi do not involve the values of F(1)R and 
F(2)R, but have values given by (O.05Nl-O.O4N2)/ 
0.064, equation (1). A display of the 6rn~ from the present 
simulation is given in Fig. 1 on a normal probability 
plot. The various small breaks in the array, and the 
departure from linearity at the extremes, should be 
regarded as of no significance and to be expected if 
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Fig. 2. Normal probability plot of 254 real Jm~ based on 

measurement of BaCoF4 structure factors using two dif- 
ferent crystals. 

N1 and N2 are indeed random standard normal devia- 
tes. 

Calculation and plotting of this and all subsequent 
normal or half-normal probability plots has been per- 
formed using DeChaine's (1967) GNORMS plotting 
routine. 

Normal probability plot of 6m for real case 

Two independent sets of Fmeas were measured on 
BaCoF4 (Keve, Abrahams & Bernstein, 1970) under 
experimental conditions that were essentially identical 
except for the size and regularity of the polyhedral 
crystal specimens studied. The experimental values of 
o'Fmeas were assigned from equation 6 

a2Fm~,s2 = V(counting statistics)+ V(form) 

k,Fr,¢as (6) + 4 ~  2 4 

t/ 

where V(counting statistics) is given by the Poisson 
distribution in the arrival of quanta at the counter 
and V(form) is given by equation (7) 

V(form)= ~ F 2 F2e,s~ ( J -  1) (7) meas/ j / 
j =  "=1 

which measures the variation among the J-crystallo- 
graphically equivalent members of a form. The per- 
centage error estimated in the nth recognized variable 
is given by kn (see Abrahams, 1969, for details). 

The first two terms of equation 6 are in general 
different for corresponding Fracas measured on each 
crystal. However, in evaluating the third term, each 
component is identical except for that relating to the 
estimated error due to differences between the meas- 
ured and actual crystal dimensions. For crystal 1, this 

4 • for crystal 2, component has value 207 x 10 .4 Fmea., 
the corresponding value is 169 x 10 .4 F4~e,,. The com- 

knFmeas is 267 x 10 .4 4 for crys- plete value of 4 ~ 2 4 Fmeas 
i 

tal 1 and 229 x 10 -4 4 for crystal 2. It may be 
i 

m e a s  

noted that the variance given by equation (7) is neces- 
sarily partly due to the variation in absorption for 
different reflections within a form. To the extent that 
this effect is also contained in the third term of equa- 
tion (6), o'Fmeas is overestimated. 

Values of 6rni for the 254 structure factors common 
to the measurements made on crystal 1 and crystal 2 
were obtained after scaling [equation (2)]. The resulting 
normal probability plot, shown in Fig. 2, does not 
depart appreciably from that expected for a normal 
distribution of Jrn~ (compare with Fig. 1). The linear 
array, in the plot, has slope of 0.8 and passes through 
the origin. 

Fig. 2 thus allows the conclusion to be drawn that 
the Jrn~ have a normal random distribution. The slope 
of the plot in Fig. 2 of 0.8 is interpretable either on the 
basis that aAFmeas[ = {a2Fmeas(1) + K2a2Fmeas(2)} 112] is 
overestimated on average by 20 per cent, or that 
AFmeas[ = {Fracas(I) -- KFmeas(2)}] is underestimated by 
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about 20 per cent, or a partial combination of both 
effects. It is assumed that errors in aAFmeas or in 
AFmeas due to error in K are negligible. In the absence 
of additional information, the third of these interpre- 
tations would be chosen as most likely, with an equal 
distribution of the two effects i.e. that o'Fme~s is 
generally too large by about 11 per cent (see 'Normal 
probability plot comparison of model with measure- 
meat '  for additional information). 

This purely external or experimental assessment of 
the validity of the assigned standard deviations may 
be compared with the quasi-external q/, indicator 
(Abrahams, 1969) where 

and 
J 

~F~--IF,.=~,I-IF~¢,I, 

2 Z2 Z j - , , .=  is the distribution magnitude at the a- 
significance level, and the model for which ~,(.~2FJ 
a2Fm~,~t) is minimized contains v variables. Parallel 
series of least-squares refinements carried out on all 
the Fracas (1) and Fmeas (2) resulted in values for the 
standard deviation of an observation of unit weight S 
of 0.887 for crystal 1 and 0.899 for crystal 2. For both 
refinement series 36 parameters (including the factor 
relating Fmeas to the absolute scale) were varied: for 
crystal 1 there were 386 and for crystal 2 there were 
877 independent Fmeas. At the one per cent confidence 
level, the range of ~0.01 is 0-088, 0.982 for crystal 1 
and 0.846, 0.959 for crystal 2. 

The conclusion may be inferred from these q/0.m 
ranges that the aFmeas are overestimated. The proba- 
bility that the error in o'Fmeas lies between 1.8 and 
19.2 per cent for crystal 1, and between 4.1 and 15.4 
per cent for crystal 2, is 98 per cent in each case. The 
agreement between this conclusion and that drawn 
from the normal plot (Fig. 2) is highly satisfactory. 
Hence, for investigations in which a single set of 
independent measurements only have been made, a 
measure of the average error in o'Fmeas can be derived 
by calculation of q/~, although this statistic is neces- 
sarily less revealing than the normal probability plot. 

Half-normal probability plot 

In cases for which the sign of & is redundant, the 
full-normal probability plot must be replaced by the 
half-normal probability plot, corresponding to an as- 
sumed standard half-normal distribution of ~.  An 
important example arises in comparisons of pairs of 
experimentally determined sets of positional coordi- 
nates. It is equally valid to use either the stated coor- 
dinate or a transformed coordinate. Hence if the posi- 
tion coordinate xyz is transformed, for example, to 
½ - x ,  ½+y, Xz-z, the sign of fi~ for x and z would 
appear reversed. Of course, only corresponding pairs 
of coordinates may be compared. 

The half-normal probability plot is constructed by 
ordering the I&l from zero to maximum value. The 
ith value of P(x) for the j-ordered statistics is given by 
(2i+ 1)/2j, and the resulting value of x is obtained 
from P(x) [equation (3)]. Half-normal probability 
plots are more prone to ambiguity of interpretation 
than normal probability plots, since the modulus of the 
parent distribution is now used. A half-normal proba- 
bility plot close to linear with slope of unity and zero 
intercept may be generally interpreted as due to a 
correct match between measured and assumed distri- 
bution, with correctly estimated standard deviations. 
It may be noted that, unlike the normal probability 
plot in which the sets of Fmeas to be compared should 
first be placed on a common scale [equation (2)], the 
parameter values in the half-normal probability plots 
discussed below are absolute. Hence, non-zero inter- 
cepts in such cases indicate the presence of systematic 
error. 

Simulated example and resulting half-normal 
probability plot of 6p 

The structure factor magnitudes and standard devia- 
tions generated by equations (4) and (5) were used in a 
standard least-squares process with Busing, Martin & 
Levy's (1962) ORFLS program, to obtain refined po- 
sition coordinates and temperature coefficients for the 
simulated model of BaCoF4. The statistic Jpi was then 
formed where 

@t=llp(1)~l-lp(2)~ll/{a2p(1)i+a2p(2)~}m (8) 

p(1)~, p(2)~ are the final parameters obtained with the 
F(1)R and F(2)R structure factors, and the a2p(1)~, 
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taining the random errors used for Fig. 1. 
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a2p(2)i are the associated variances in these para- 
meters. 

Assuming a standard half-normal distribution, the 
ordered ~p~ are shown plotted as a half-normal proba- 
bility plot in Fig. 3. The apparent departures from 
linearity are assumed to be without significance and 
provide a standard for judging subsequent half-normal 
plots. It may also be seen that the slope is close to 
unity as is to be expected. 

Structure factors calculated on the basis of the re- 
fined parameter sets p(1) and p(2) have accuracy in- 
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Fig. 5. Normal probability plot for 254 simulated 6mi based 
on a combination of random and systematic error. 

dicators given in Table 1 for comparison with the 
experimental results in the next section. 

Table 1. Indications of  accuracy in simulated 
structure factors containing random error 

R wR S q/o.ol 
F(1)R set 0 .0389 0.0462 0.998 0.888, 1"163 

F(2)R set 0 .0333 0.0392 1"061 0-943, 1"237 

Half-normal probability plot of 6p for real case 

The two independent sets of structure factors meas- 
ured from crystals 1 and 2 refined to give the final 
parameters p(1)i and p(2)~ of Keve, Abrahams & 
Bernstein (1970). Table 2 contains accuracy indicators 
for these refinements. Fig. 4 gives the resulting half- 
normal probability plot. 

Table 2. Indicators o f  accuracy in measured 
structure factors o f  BaCoF4 

R wR S q/0.0x 
Fracas(l) 0"0749 0 , 0 9 2 4  0"887 0"808, 0"982 

Fmeas(2) 0"0584 0 ,0850  0"899  0"846, 0"959 

The ordered array of real fipt in Fig. 4 is as close to 
linear as the array of simulated fipi in Fig. 3 obtained 
with random error only present in the data. The array, 
which points at zero, has a slope of about 1.75 in- 
dicating either that the Ap, are too large, the api too 
small, or that both conditions are applicable. The only 
way in which the Ap~ can be too large is if bias is 
present in the data such as to cause most p(1)~ par- 
ameter values to differ from the true (but unknown) 
value in a sense opposite to that in which the corre- 
sponding p(2)~ value differs. The half-normal proba- 
bility plot for such a case cannot be linear, hence the 
plot of Fig. 4 provides strong evidence for excluding 
such bias. 

The alternative hypothesis, that api is too small, 
may be accounted for if both Fmeas (1) and Fracas (2) 
contain error components that vary systematically with 
parameters in the model. In this case, both sets of data 
are necessarily fitted by least-squares to the resulting 
calculated structure factors better than is warranted 
by the accuracy of the data, thus giving sets of api 
that are too small• If this alternative hypothesis is 
correct, and if the distribution of error between ap(1)~ 
and ap(2)l is equal, then both sets of standard devia- 
tions are too small by 75 per cent. 

In the absence of a half-normal probability plot, it 
would be necessary to regard the largest Ap~ of 5.26p,, 
corresponding to the data in Fig. 4, as highly signi- 
ficant. For 35 p~ parameters (excluding the scale factor) 
the chance of such a large Ap~ occurring is only 
7 x 10 -6. However, application of the factor 1.75 to all 
the ap~ results in a half-normal probability plot with 

A C 2 7 A  - 5 
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an essentially normal distribution of unit variance. The 
largest Ap~ is in consequence reduced to 2.97 ap,, for 
which the chance of occurrence is 10 per cent. Thus, 
the entirely false conclusion that the largest values of 
Ap, represent highly significant differences is averted 
by means of the probability plot. 

Case of simulated structure factor sets 
containing similar bias 

Measured sets of structure factors, in general, contain 
both random and systematic error. The influence of 
different combinations of these errors may conve- 
niently be investigated by simulation. In this section, 
brief consideration is given to the simple case of two 
sets of structure factors, each of which contains similar 
but not identical systematic bias both as the sole 
source of error (Fs) and also in combination with a 
random normal error (Fs, lt). 

The structure factors are given explicitly by equations 
9 to 12. 

F(1)s=FEF+0"3 Fee (sin On~l)/(sin Omax) (9) 

F(2)s=F~F+0"2 Fee (sin Oh~z)/(sin Omax) " (10) 

F(1)s,R=F(1)s+O'05 N1FEF (11) 

r(z)s,R=r(2)s+O.04 NzFEF. (12) 

(See equations 4 and 5). The systematic bias is closely 
related to an artificial isotropic temperature factor. 
The standard deviation of F(1)s is taken as aFs= 
0.15 FgF, and of F(2)s as 0.10 FEe from equations 
(9) and (10). The standard deviation of Fs, R includes 
aFs and crFR defined previously. 

With only systematic bias present, the interexperi- 
mental agreement factor R1,2 is 0.0153. The normal 
probability plot (not shown) of Jm~ is slightly concave- 
convex, passing through zero and with a slope of about 
0.11. This small slope is primarily due to the difference 
terms in equation (1) being too small. With both syste- 
matic and random error present, Rl,z for the two 
Fs,R sets is 0.0452. The resulting normal probability 
plot of cSmi is shown in Fig. 5. The normal error com- 
ponent has essentially straightened the plot, which 
should be regarded as linear by comparison with Fig. 1. 
The small slope is primarily governed by the nearly 
parallel biases present in the data sets. 

Refinement of the Fs, R sets, and the Fs sets, re- 
suits in half-normal probability plots of 6p containing 
distinct structure with associated departure from line- 
arity. The simulated bias correlates strongly with the 
fl~ parameters and very weakly with the remaining 
parameters, causing a separation between these two 
types of parameter on the half-normal plot. 

In several simulations of error in which the ap plot 
was not linear, the corresponding values of api were 
entirely unreliable in terms of the departures of the 
pi from the true (known) values. Conversely, a linear 
6p~ array of slope ~(fip) in the simulations corre- 

sponded to departures of pi that are acceptable in 
terms of Se(Jp) .crp. 

Diagnostics for systematic error from essentially linear 
normal probability plots 

Markedly nonlinear Jm and Jp plots are necessarily 
caused by systematic error. It is assumed throughout 
this paper that the basis distribution is Gaussian. The 
presence of most kinds of systematic error is hence 
readily recognized, although the scatter inherent in 
plots drawn from a limited number of data may obs- 
cure small departures from linearity. Certain types of 
systematic error result in apparently linear Jm and Jp 
plots. These are errors that have approximately equal 

~ I. 1 .(a) or (c) 
1. I. 2. (a) or (c) 

II. 1. (a) or (c) 

~ I. 1. (b) 
2. II. 1. (b) 

7. ~ ~ _  III.1. (a) or (b) 

Fig. 6. Idealized linear normal (left) and half-normal (center) 
probability plots expected for various combinations of sys- 
tematic and random error and case (right) given in the 
Appendix. Abscissae represent expected J values, ordinates 
experimental values. 

1. S ~  AS, aF > correct value 
2. AS,~AR, aF=aFR only 
3. S>> R, AS~-AR, crF=crFR only 
4. S ~  R, AS,~ AR, aFcorrect 
5. S,~ R,AS~ AR, (rF=aF• only 
6. S ~ R ,  AS,~AR, aF > correct value 
7. S,~ R, aF= aFR = correct value 
8. S,~R, aF > correct value. 
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but low correlation with all parameters varied in the 
model. 

Ideally, the assigned aFmeas should combine an ac- 
curate estimate of the variance due to random error 
with the mean square errors due to systematic bias 
(case a). The real case will deviate from ideal toward 
one of two extremes. At one, aFmeas consists of esti- 
mates of the variances due to random error only 
(case b). At the other, aFmeas contains an overestimate 
of systematic error in addition to an estimate of the 
variance due to random error (case c). Evaluation of 
°k', may indicate which of the above cases is applicable. 

It is assumed that corresponding pairs of structure 
factors that are independently measured and correctly 
scaled may be represented by equations (13) and (14). 

F(1) = I F E F + S ( 1 ) +  R(1)I (13) 

F(2) = IFEF + S(2) + R(2)I (14) 

where S(1), S(2), R(1), R(2) are vectors giving the 
magnitudes and sense of the systematic (S) and random 
(R) components of the error associated with the true 
structure factor. Detailed analysis of combinations of 
these vectors (see Appendix) lead to apparently linear 
fm and fp plots of varying slopes. By matching the 
experimental fm and fp plots to one of the idealized 
pairs shown in Fig. 6, the relative magnitudes of the 
random and systematic errors present may be diag- 
nosed. 

Normal probability plot comparison of model 
with measurement 

In previous sections, probability plot analysis has been 
applied to comparisons of independent sets of meas- 
urements in fm plots, and to independent sets of 
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Fig. 7. Normal probability plot of 386 &R~, based on measure- 
ment of BaCoF4 crystal 1 structure factors. 

derived parameters in fp plots. The probability plot 
may also be applied to a comparison of measured and 
calculated structure factors (fR plots). It is emphasized 
that the fiR plot by itself is not as powerful as, nor is 
it a substitute for, the fm and fp plots obtainable from 
independent measurement sets. The fR plot in com- 
bination with fm and tip plots can however give addi- 
tional information: it is also considerably more con- 
venient to use than are the columns of ~F/~Frneas 
(printed by many least-squares refinement programs) 
and is greatly to be preferred to the conventional R 
value. 

The fiR plot is constructed similarly to the fm nor- 
mal probability plot: the statistic fR~=~Fd~Fmeasl, 
where the least-squares refined scale factor is used to 
place Fmeas and o'Fmeas on the Feale scale, is ordered 
and plotted against x~ [equation (3)]. If the Fmeas con- 
tain no systematic error, the aFmeas are correctly esti- 
mated, and the trial structure is essentially correct, then 
the method of least-squares will result in a linear fR 
plot with zero intercept and a slope of unity. Devia- 
tions from any of these plot characteristics indicate a 
failure in one or more of the assumptions. 

An example of a fR plot provided in Fig. 7, based 
on the published data for crystal 1 of BaCoF4, is 
briefly analysed. This array is close to linear, except 
for a few data points, with a slope of 0.8 and intercept 
of ¼ OR. The near linearity of the array corresponds to 
an absence of systematic error in the F m e a s  (1 )  of the 
kind that cannot be absorbed by the model. It is 
noted that the slope is consistent with the result of 
Table 2 and of Fig. 2, and that the intercept is not 
significantly different from zero, in terms of the least 
squares error of 1.1% in the scale factor. 

Combination of the fR with the fm plot provides 
further information. The common slope of 0.8 indi- 
cates the o'Fmeas (1) to be most-likely overestimated by 
about 20 per cent, and hence the earlier interpretation 
that part of the deviation of 5°(fro) from unity should 
be attributed to errors in AFmeas (see Normal proba- 
bility plot of fm for real case) is unnecessary. An 
additional conclusion is that there is no essential differ- 
ence between any Fmeas (1)~ and Fcalc t for this data 
set and model. 

Discussion 

The implicit assumption is always made that a single 
crystal specimen of a given substance is indeed re- 
presentative of the intrinsic properties of that material, 
so long as an investigation is confined to that one 
specimen alone. It is only possible to examine this 
assumption by studying the properties of numerous 
samples. Where the necessary measurements are long 
and tedious, the study of at least two specimens enables 
a partial test of this assumption to be made. The infor- 
mation thus generated then allows several other hypo- 
theses to be tested. 

Comparison of sets of Fracas from two different crys- 
tals, in a normal probability plot, immediately shows 

A C 27A - 5* 



164 N O R M A L  P R O B A B I L I T Y  PLOT A N A L Y S I S  OF E R R O R  

if the Omi are normally distributed. A normal distri- 
bution is consistent with the hypothesis that both crys- 
tals generate the same population of Fmeas and that the 
o'Fmeas are correctly estimated. Conversely, a non- 
linear 6m plot would arise from a distribution other 
than normal, allowing the inference to be made that 
either the two data sets differ systematically or the 
o'Fmeas are systematically misestimated. Apparent or 
real differences in the data sets may be caused by one 
or more of the following: 

1. Unrecognized errors introduced in measurement. 
2. Physical differences such as the degree of primary 

or secondary extinction present. 
3. Chemical differences resulting from failure of the 

assumption that the crystals are indeed representa- 
tive of the given material. 

The possibility that cause (1) is operative should always 
be considered and positively eliminated before pro- 
ceeding further. For two sets of Fmeas drawn from the 
same statistical population, the 6m plot must have zero 
intercept after application of equation (2) to derive K. 
If the intercept is not zero, the data sets cannot be 
related by a single scale factor and hence cannot come 
from the same normal population. 

Some of the differences due to cause (2) may be 
corrected for in the model. Remaining significant differ- 
ences of unrecognized origin result in a nonlinear 6p 
plot. Suspected errors sources may be tested by exami- 
nation of the tip plot after each attempted correction. 
Similarly, subsets of either Fmeas orp~ may be examined, 
using Jm or tip probability plots of the subsets. Thus, 
the presence of suspected symmetry elements among the 
set of Fmeas is detectable from probability plots of 
appropriate subsets of Fmeas: likewise, the possibility 
that the fip~ associated with the position coordinates 
belong to a different population from those associated 
with the thermal coefficients may also be tested di- 
rectly on subset plots. 

Departures from unity in the slopes of linear plots 
of Jm and 6p are discussed in the Appendix and are 
summarized in Fig. 6. 

Underestimation of derived standard deviations has 
also been found in the recent I. U. Cr. single crystal 
intensity project, which undertook, in part, to refine 
the structural parameters of D( + )-tartaric acid for each 
of seventeen independent sets of Fracas (Hamilton & 
Abrahams, 1969). Comparison of the agreement among 
individual parameters and the weighted mean with the 
standard deviations derived by the method of least- 
squares showed that in this project the derived crpi for 
all coordinates are about 1-95 too small on average. 
This I.U.Cr. project result, together with the findings 
obtained with the BaCoF4 data, strongly suggests that 
underestimation of derived standard deviations is not 
uncommon. 

Derived standard deviations should be regarded as 
suspect unless post facto tests for validity have been 
applied. Replicate measurement and analysis of nor- 

mal probability plots provide a stringent test. Once it 
has been determined that both crystals are indeed 
characteristic of the material under study, the two data 
sets may be combined to produce a final set of p~ and 
o-p~ which are superior to those derived from either 
individual set of Fmeas. 

Probability plot analysis may also be used in com- 
paring data sets measured with two different instru- 
ments but with the same crystal, thus providing infor- 
mation on the validity of the experimental procedures. 
An extension of this approach is use of two instru- 
ments and two crystals, producing four data sets. 

The design of an optimum diffractometer experiment 
must now be modified in light of the above analyses. 
Since use of two crystals is demonstrated to be highly 
advantageous it becomes preferable to measure not a 
full set of Fmeas on one crystal alone, but instead, a 
half set on one crystal and the remaining half plus an 
overlapping set on a second crystal. The overlapping 
set should randomly sample reciprocal space and 
should contain at least one hundred Fmeas. 

The application of probability plots to measured and 
derived quantities and associated standard deviations, 
although restricted in the present paper to structure 
factors and structural parameters, is entirely general 
and may be used for the analysis of error in physical 
measurement of all kinds. 

It is a pleasure to thank Miss I. G. Abrahamson for 
suggesting the use of normal probability plots to us, 
and for valuable discussions on the properties of such 
plots, and Dr Walter C. Hamilton for numerous illu- 
minating comments on this manuscript. 

APPENDIX 

Synthesis of diagnostic probability plots 

Various combinations of the vector pairs S(1), S(2) 
and R(1), R(2) of equations (13) and (14) are consi- 
dered in this Appendix as the basis for the section 
Diagnostics for systematic error from essentially linear 
normal probability plots. 

The magnitude AS=(IS(1) -S(2) I )  and A R =  
(JR(l)- R(2)] ) represent the modal values of the vector 
differences. The relative magnitudes of S and R are 
considered in three main groups. Within each group, 
the relative magnitudes of AS and AR are considered 
for each of the cases (a), (b) and (c) defined in the above 
section. The arguments in later groups are parallel to 
those given in detail for group I. 1 below. The num- 
bering corresponds to the labeling on Fig. 6. All sym- 
bols represent modal values. 

I. Systematic error large compared with random error 
1. For AS very small compared with AR, i.e. S(1) is 

essentially equal to S(2), equations (13) and (14) 
give A F approximately equal to A R, thus A F is essen- 
tially independent of the systematic error. 
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(a) aF contains the components of error due to R and 
S, hence AF/aF"AR/aF~  1 and S:(6m) is much 
less than 1. For the parameters obtained by least- 
squares refinement with the F(1) and F(2) structure 
factor sets, as AS becomes small, Ap approaches 
ApE (where PE is the parameter value obtained for 
random error present only). However, ap is much 
greater than ape since the systematic error is large 
and not taken up by variation of the parameters in 
the model. Hence Ap/ap is much smaller than 
ApE~apE which is unity, and 6:(tp) is therefore 
much less than 1. 

(b) with aF=aFE, AF/aF~AR/aFE~I  and hence 
Se(tm)~ 1. However, Ap/ap is small as in case 
I. 1 (a). Hence S:( tp)< 1. 

(c) with aF> aFs > aFE, AF/aF< AR/aFE or less than 
1. Hence S/'(dm)< 1. Ap/ap is small as in case 
I. 1. (a). Hence ~9°(tp)<1. 

2. For AS~_AR, AF>AR. For (a), (b), and (c), 
Ap > ApE, but ap >> apE, hence S:(@) < 1. 

(a) aF>) aR and AF> AR, hence 5:(dm < 1 
(b) aF=aR but AF>AR, hence 5:(tin) > 1 
(c) aF>>aR and AF>AR, hence 5:(dm)< 1 

3. For AS>>AR, a linear tm plot cannot be obtained 
and need not be considered further in this section. 

II. Systematic error comparable with random error 
1. When AS~AR,  AF~_AR. For (a), (b) and (c) 

Ap ~_ ApE, but ap > apE, hence 5:(tp) < 1. 
(a) a F -  ~ ]/2aR and AF~_AR, hence 5°(din)< 1 
(b) aF  ~ _ aR and AF ~_ AR, hence 5"(tim) ~_ 1 
(c) a F >  l/2aR and AF ~_ AR, hence £:'(tm)< 1 . 

2. For AS"AR, in all three cases, Ap>ApE and 
ap > apE, hence ~( tp)  is indeterminate. 

(a) a F >  aR and AF> AR, for correct oF, 5:(tm) ~_ 1 
(b) aF___ aR but AF> AR, hence 5:'(tm) > 1 
(c) aF> l/2aR and AF> AR, hence ~ ( t m ) <  1. 

III. Systematic error small compared with random 
e r r o r  

1. If AS~AR,  then AF~_AR. In each case Ap~_ApR 
and ap ~_ apR, hence 5e(@)_~ 1. 

(a) and (b) aF~aR  and AF~_AR, hence 5:(6m)___ 1 
(c) oF> o'R and AF ~_ AR, hence 5 : ( tm)>  1. 
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