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Abstract. The measurement of d coefficients from second-harmonic efficiencies in
crystal spheres is studied. KH2PO4 is used as a reference for measurements in
spheres and with the Maker-fringes technique. As an example, unknown
d coefficients in an orthorhombic mannitol, C6H14O6, in which large coefficients of
optical rotation have recently been measured, are determined as
d123 = 0.06(2) pm V−1 and compared with a calculation performed with a
dipole–dipole interaction model in which the effect of the electric field of a light
wave on the crystal structure is applied. Modelling of the basic parameters in the
calculation gives good agreement with the experimentally derived values. The
accuracy in determining the d coefficients, achievable with spheres is limited to
20%.

1. Introduction

Makeret al (1962) described a technique which allows one
to measure the coefficients of second-harmonic generation
(SHG), the so-calledd coefficients, with acceptable
accuracy. This technique, which was refined by Jerphagnon
and Kurtz (1970), still provides the best results, but one
needs relatively large and well-polished sample plates.

More recently, Velsko (1989) published details of a
technique for making direct measurements of the phase-
matching properties of small single crystals, ground
approximately into spheres and mounted at the centre
of an Eulerian cradle. In this method the samples are
immersed in index-matching fluids to reduce scattering
from the uneven surface. It was claimed with this method
that phase-matching angles could be determined to within
±1◦, angular acceptances to within 20% and effective
d coefficients to within 25%. Similarly, Boulanger and
Marnier (1989) published measurements of the walk-off
angle as a function of the propagation direction and non-
linear optical behaviour near the optical axes in KTiOPO4,
employing spheres of about 5 mm diameter in a two-circle
goniometer. However, despite the promise of the authors
at the end of the publication to extend the technique, so
that non-linear coefficients can be measured from SHG
efficiencies in different directions, to the best of our
knowledge this has not been published so far. In very
recent work (Boulangeret al 1994) the sphere technique
was used to determine the relative signs of thed coefficients

of KTiOPO4, the magnitudes of the coefficients still being
measured by using crystal plates.

The aim of the present paper is to discuss measurements
for spheres with KH2PO4 as a reference and with mannitol,
C6H14O6, for which thed coefficients are not well known.
Mannitol has large optical rotation coefficients (up to
50◦ mm−1 at 600 nm). However, the coefficients of the
electro-optical effect are rather small. Most of the optical
properties of orthorhombic mannitol, which belongs to the
Hobden class 9 (Hobden 1967), were recently described
by Kaminsky and Glazer (1997), employing a new model,
the dipole–dipole interaction electron-cloud shifting model,
abbreviated as the DES model, based on the dipole–dipole
model of Devarajan and Glazer (1986), to which the
effect of an external electric field on the crystal structure
was added. Using the measured values of the refractive
indices of mannitol and the structural co-ordinates, the
d coefficients were estimated to be small as well.

A preliminary experimental test on SHG was carried
out (Fitzmaurice 1994), showing that the SHG signal
was roughly of the expected magnitude (Fitzmaurice and
Kaminsky 1995). However, a more accurate determination
of thed coefficients is still necessary for further discussions
of the model calculations.

A further unanswered question is that of to which
substances the simple DES model of Kaminsky and
Glazer (1996) is applicable. This model allows one
to estimate the linear birefringence, optical gyration
(circular birefringence) andd coefficients and, with the
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help of experimental dielectric constants, to calculate
electrogyration and electro-optical effects. In most cases,
the magnitudes of the tensors that obey Neumann’s
principle are calculated with the correct sign. However, the
model was developed to study relations between different
effects for a given structure rather than to substitute
for other commonly used theories such as the Miller-
delta theory (Miller 1964, Robinson 1967), bond-charge
theory (Levine 1973, Engel and Defregger 1991), ionic
group theory (Chen 1979, Chenet al 1989, 1990) and
hyperpolarizability models (Zyss 1993).

In this paper, we shall give a brief description of the
theory of the SHG generation in crystal spheres. Secondly,
the accuracy of measurements on spheres is compared with
that of those from crystal plates, in both of which cases
KH2PO4 serves as a reference. Thirdly, the result for
mannitol is discussed and compared with calculations with
the DES model.

2. Theoretical considerations

2.1. The two-circle cradle

We assume that the wavevectork is parallel toz, wherex,
y andz are the axes of the Cartesian laboratory-reference
system (see figure 1). The initial polarizations areEL1
parallel to x and EL2 parallel to y. A variation of the
direction of the wavevector is introduced by rotation first
aboutz by the angleϕ and then abouty by the angleυ.
This results in

EPi = uijELj si = uij sLj
with sL‖(0, 0, 1)L the direction of the wavevector for
υ = ϕ = 0, EP the transformed initial polarization and
u the rotation matrix

u =
( cosϕ cosυ sinϕ cosϕ sinυ
− sinϕ cosυ cosϕ − sinϕ sinυ
− sinυ 0 cosυ

)
.

If the whole crystal is mounted differently, we have
to specify the matrixw which transforms the direction
s according to si = wijujks

L
k . Thus w gives the

transformation between the cradle and the physical
reference system (e2‖b∗, e3‖c). (Direction cosines, which
are related to the physical reference system{ei}, are written
as(x, y, z)p.) In this caseEPi = wijujkELk .

The angleγ between the calculated vibration mode
E′′(ω) in the crystal (see the appendix) and the initial linear
polarizationEP with EL = (sinβ, cosβ, 0)L is calculated
from

cosγ = EPi E
′′
i (ω)

EPE′′(ω)
.

It follows that the SHG signal is modulated both for
type I and for type II phase matching (Okada and Ieiri
1971) according to cos4 γ for type I and cos2 γ sin2 γ for
type II. In the case of circularly polarized light we get
only a quarter of the calculated efficiency. If the sample
is prepared as a plane-parallel plate, we have to consider
the effect of reflection on an inclined plate. The main

contribution is related to the reflection of the initial wave.
The amplitudes ofEL1 and EL2 , as well as the thickness
of the sample, are changed by the rotationυ according to
the Fresnel equations and cos−1(υ ′), respectively.υ ′ is the
angle between the wavevector and the normal to the plate
inside the sample. The neglect of further reflections will
lead to errors of more than 10% ifυ ′ and the refractive
indices are both high. Multiple reflections inside the
sample plate can increase the signal. However, it is our
experience with another optical effect (the Faraday effect)
measured with crystal plates, which in theory exhibits
a strong dependence on multiple reflections, that this is
significant only in absolutely perfect plane-parallel and
polished samples and is difficult to achieve with standard
preparation techniques. However, in almost ideal samples,
interference by multiple reflections similar to those of the
Fabry–Ṕerot interferometer causes additional peaks in the
observed SHG efficiency (Bechtold 1976).

2.2. Crystal spheres

If the sample is prepared as a polished sphere (Velsko
1989), the phase-matching acceptance angle is increased
by confocal refraction. We may assume a Gaussian-shaped
intensity profile for a laser beam of diameterD, leaving
about 60% of the intensity withinD/2. The focusf of
the sphere is found fromf = 0.5nd/(n − 1), wheren is
the average refractive index andd is the diameter of the
sphere, which leads tof > d for realistic refractive indices.
The maximum angular acceptanceα in a sphere is roughly
estimated from

α = D(n− 1)

2dn
(with D = 2 mm, d = 5 mm andn = 1.5, α = 4◦)
which in general will be much larger than the angular
acceptance of a plate of the same thickness. This results
in an integrated phase-matching locus best represented by
a Gaussian formula (see the appendix) if the acceptance
angle of the sphere is much larger than that of the plate:

A

L2
e−x

2/w

where w defines the width of the peak andx is the
coherence length. The factorL−2 is introduced to conserve
the independence of the SHG amplitude relative to the
sample thicknessL. Becausex in general depends on the
refractive indices, the value ofw has to be fitted to match
the calculated acceptance angle. The amplitudeA is set
so that the integrals below the two shaping functions are
equal, which results inA = (π/w)1/2. Although it has to
be kept in mind that this is a very rough approximation, it
has been shown that the area beneath the SHG matching
peak is a precise measure of the SHG signal (Nashet al
1970).

The SHG efficiency changes with confocal refraction:
the SHG signal is in proportion toI 2 ∝ (D−2(z))2 ∝
[4/D(1 − z/f )]4, where z is the distance along the
wavevector from the initial side of the sphere. The SHG
signal varies according to

I 2
eff

I 2
0

∝ 1

d

∫ d

0

dz

(1− z/f )4 ∝
f

d

(
1− d

f

)−5

.
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SHG in single-crystal spheres

Figure 1. The experimental set-up: 1, photomultiplier; 2, 532 nm interference filter; 3, convex lenses; 4 and 5, cradle;
6, sample; 7, quarter-wave plate; 8, half-wave plate; 9, diaphragm; 10, beam-splitter; 11, reference photodiode; 12, Nd:YAG
laser; 13, storage oscilloscope; 14, stereographic projection of the cradle angles and refractive indices in standard geometry;
and 15, the acceptance angle (in mannitol and KH2PO4; f is outside the sphere).

The ratiod/f = 2(n−1)/n depends only on the refractive
indices.

2.3. The DES model

Second harmonics may be calculated from the shift of
electron clouds surrounding the atoms induced by the field
of the light wave. If εij (0) are the relative dielectric
constants without light andεij (Elight ) those with the virtual
light field, the difference

εij (E
light

k )− εij (0) = 2dijkE
light

k

gives thed coefficients. The relative dielectric constants for
the wavelengthλ of the initial infra-red light are calculated
with the dipole–dipole model developed by Devarajan
and Glazer (1986), which uses the crystal structure co-
ordinates and the polarizability (strictly, in this paperα
is a polarizability volume)αij of each atom inside the unit
cell. The dispersion ofαij is roughly approximated by a
λ−1/2 dependence. Because the model needs static fields
and the field of the light wave varies sinusoidally, a static
fraction (2/π ) of the field is taken to induce the virtual
shift x of the electron cloud, which then is related to the
polarizability of thekth atom by

xi(k) = 8ε0

e
αij (k)E

light

j

whereαij is in Å3, x in metres,Elight in V m−1, e is the
charge of an electron in Coulombs andε0 is the permittivity
of free space. The commutativity of the last two
indices in thed coefficients has to be applied artificially.
Nevertheless the calculations automatically obey Neuman’s
rule. Because the dielectric constants are symmetrical,

Kleinmann’s rule (Kleinmann 1962) is followed, that is,
thed tensor is totally symmetrical. This model had already
been used successfully to calculate induced effects in some
crystals, including mannitol (Kaminsky and Glazer 1997).

3. Experimental details

3.1. The set-up

The set-up to measure the SHG signals is shown in figure 1.
The beam of a Nd:YAG laser (operating at 1.064 µm) is
split to allow reference intensity measurements. The main
part of the beam is passed through a half-wave plate and
then focused onto the sample. The intensity behind the
sample is collected with a confocal lens, passes through an
infra-red filter, an optional neutral density filter and then a
532 nm interference filter and is fed into a photomultiplier.
The reference diode and the photomultiplier are connected
to a storage oscilloscope (Gould 4072) which is connected
to a computer. The computer also drives the motors of
the two-circle goniometer and determines the position of
the half-wave plate with which the initial polarization is
rotated. A quarter-wave plate can be inserted to produce
circularly polarized light.

To make crystal spheres, a cube was first cut with
a wet wire saw and then the corners of the cube were
removed. The resulting shape was ground manually into
a sphere using emery paper and then polished with Cr2O3

on a polishing cloth. The minimum sphere diameter which
could be treated in this way was about 5 mm. The quality
of the spheres was such that the beam of a laser focused on
the centre of the spheres was collected by a screen of 5 cm
diameter at a distance 20 cm from the sphere for arbitrary
orientation of the spheres. Plates were ground with 5µm
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Figure 2. Maker fringes of a KH2PO4 sample plate cut on (001) with linear-polarized light. The thickness is 0.342(2) mm.
The polarization angle β of the linear incident light was adjusted to give the maximum possible signal in the experiment and
for the calculation. The wavevector was tilted from [001] towards [110].

Figure 3. Maker fringes of a KH2PO4 sample plate cut on (001) with circularly polarized light. The thickness is 0.342(2) mm.
The quarter-wave plate was inserted at 45◦ inclined towards y. The wavevector was tilted from [001] towards [110].

Al 2O3 powder. The faces were polished on pitch with
Cr2O3 (polish green). Moisture introduced by breathing
on the pitch lap at the same time helped to establish an
optical finish resulting in clear surfaces being inclined less
than 2µm cm−1 relative to each other.

3.2. Calibration

The system was calibrated in three ways: firstly,
by measuring Maker fringes in KH2PO4 with linear-
polarized light, secondly with circularly polarized light
and thirdly by measuring the SHG signal from a sphere
of KH2PO4. The d coefficient of KH2PO4 is d123 =
−0.39 pm V−1 (Veerabhadra and Narasimhamarty 1978,
Craxton 1981). The refractive indices were taken from
Zernicke (1964).

Figure 2 shows Maker fringes with polarized light in a
KH2PO4 crystal plate that had been cut along the optical
axis. The sample was tilted so that the wavevector moved

towards [110]. The maximum angle between [001] and the
wavevector was limited to about 70◦ by the cradle circles.
No Q switch was used because the intensity of the signal
was easily observed without it. The measurement was
repeated with circularly polarized light, whereby the sample
was remounted to test the reproducibility of the experiment.
The theoretical description was fitted to both measurements
with the knownd123 of KH2PO4 and an unknown factor
Kplate to calibrate the sensitivity of the photomultiplier.
The calibration procedure gave identical values forKplate
for linear- and circularly polarized light (figure 3). That we
obtained an acceptable agreement between the experimental
results and calculations confirmed the theoretical approach.
However, using an additional optical component to produce
circularly polarized light caused slightly larger errors in the
peak heights, compared with the linear-polarized case. On
the other hand, circularly polarized light has the advantage
that the direction of the initial polarization need not be
adjusted.
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Figure 4. The dependence of the SHG signal on cradle angles ϕ and υ in a sphere (of diameter 6.0(1) mm) of KH2PO4 and
the calculated spectrum.

Figure 5. The dependence of the SHG signal on cradle angles ϕ and υ in a sphere (of diameter 4.8(1) mm) of mannitol and
the calculated spectrum.

Circularly polarized light was also used on a sphere
(diameterd = 6.0(1) mm) made from a KH2PO4 crystal.
The sphere was oriented by using Laue back-scattering pho-
tographs. Figure 4 shows the resulting signal, which was
screened by the goniometer mount for larger values ofυ and
ϕ. The calculation gave a different factorKsphere which re-
lates the theoretical description to the set-up resulting from
the confocal refraction of the sphere and because the sig-
nal had to be attenuated with a 5%-transmission filter. The
so-called half-width factorsw (see section 2) were fitted
to produce an acceptance angle of about 4◦ for spheres of
about 5–6 mm diameter and refractive indices close to 1.5.

3.3. Measurements on mannitol

Figure 5 shows the SHG intensity collected from one
quadrant of a sphere of mannitol of similar diameter to
the KH2PO4 sample. After we had adjusted the half-width
factors and recalculated the calibration factorKsphere to
match the measurement with a 30%-transmission neutral
density filter, thed coefficients were fitted with refractive
indices from Kaminsky and Glazer (1997). As a result,
the best fit was found for thed coefficients d123 =
0.08(2) pm V−1, d231 = 0.07(2) pm V−1 and d312 =
0.05(2) pm V−1. Kleinmann’s rule was confirmed to within

the accuracy of the experiment. However, we estimate the
error due to the calibration of the sphere to be about 20%.

To test the accuracy of the results, Maker fringes were
collected on a mannitol plate, containing the axisc and
cut at 45◦ towardsa and b (figure 6). By chance, the
normal to the plate was close to the direction of type II
phase matching. Circularly polarized light was used. The
result was fitted with an effectived coefficient of 0.5(d231+
d123) = 0.06(1) pm V−1. Because the signal along the
phase-matching loci in the plates slightly exceeded the
linear regime of the photomultiplier, intensities within a
tilting angle of the plates of±5◦ of the phase-matching
angle were omitted from the fitting procedure. Outside
this range the intensities did not saturate the detector and
so these measurements could be used to infer to reasonable
precision the phase-matching loci. The measurements along
the phase-matching loci for spheres were carried out in the
linear response regime of the photomultiplier by attenuating
the signal to 5% of its original value. Phase matching
affected the measurement in a diagonal cut containing the
a axis (figure 7) in a similar way to that in figure 6, but
for the sake of retaining the weaker fringes we did not
attenuate the signal further. Here, the best fit was obtained
with 0.5(d213+ d312) = 0.06(2) pm V−1. From this it is
very likely thatd123= d213= d312= 0.06(2) pm V−1.
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Figure 6. Maker fringes with circularly polarized light of a mannitol sample plate containing c and cut 45◦ towards a and b
((1, 1, 0)p of the physical reference system, see section 2.1: (1, 1, 1)p‖[1/a 1/b 1/c] in mannitol). The thickness is
0.470(5) mm. The quarter-wave plate was inserted at 45◦ inclined towards the linear initial polarization. The wavevector was
tilted from (1, 1, 0)p towards [010].

Figure 7. Maker fringes of a mannitol-sample plate cut on (0, 1, 1)p with circularly polarized light. The thickness is
0.520(5) mm. The wavevector was tilted about (0, 1, 1)p from [001] towards [010].

4. Discussion

4.1. Experimental aspects

The numbers in table 1 show how errors of various origins
affect the calibration andd coefficient determination. A
calibration error of 20% is the minimum error achieved with
crystal spheres. Further measurements using this calibration
introduce additional errors, which produce the rather large
error of 30% in the measuredd coefficients from a mannitol
sphere experiment. The calibration of plates is much more
accurate and thed coefficients are more precisely measured
in this way. However, the relative signs of thed coefficients
are easily derived from spheres.

The measurements of mannitol in the form of a sphere
and as plates, both calibrated against KH2PO4, were
reasonably in accord in terms of the resultingd coefficients,
to within 20%. The preparation of the spheres is more
difficult than is that of the plates, but it was possible to
improve the quality of the sphere surface with an index-

matching fluid. In the case of plates, it may be possible
to coat the surfaces with a glass plate and an index-
matching immersion fluid, but the use of additional optical
components caused other problems. In addition, the larger
acceptance angle in spheres made it easier to find the
location of phase matchability and the quasi-independence
of the surface reflections relative to the sphere’s orientation
simplified the calculations.

On the other hand, we needed rather large single
crystals (7 mm× 7 mm× 7 mm), from which the spheres
were prepared in order to achieve sufficient quality. An
attempt to use smaller spheres made in an air-driven
spherizer failed because they were ellipsoidal in shape and
had a rather rough surface, both defects being a result of
the cleavage face on (010) in mannitol. The measurements
presented here were only performed on transparent spheres
in which none of these defects were visible.

One general problem with spheres is that they are of use
only for materials that exhibit phase matchability. In such a
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Table 1. Details of the calibration and the measurements in KDP and mannitol. The refractive indices of KDP are
n0 = 1.4950 and ne = 1.4605 at 1064 nm and n0 = 1.5117 and ne = 1.4699 at 532 nm (Zernicke 1964). The refractive indices
of mannitol are n1 = 1.5432, n2 = 1.5098 and n3 = 1.5499 at 1064 nm and n1 = 1.5554, n2 = 1.5216, n3 = 1.5615 at 532 nm
(Kaminsky and Glazer 1997). L is the thickness of crystal plates and d the diameter of spheres. The half-width factors w
(type I) and w (type II) are numbers, which connect the line width of the Gaussian phase-matching profile in spheres to the
coherence lengths of type I or type II phase matching, respectively (see the discussion of crystal spheres in section 2.2). υ0
and ϕ0 are offsets of the cradle angles with which the adjustment of the samples is refined. The errors of the transmission
filters are those due to the manufacturer. The factor K calibrates the photomultiplier: U (photomultiplier) = KI2ω(dijk ), where
I2ω(dijk ) is described in the appendix. If the sensitivity of the detector system is increased by a factor of six when replacing
the 5%-transmission filter by a 30%-transmission filter, the calibration factor K has to be increased by a factor of six too. The
orientation of the sample is specified with respect to the physical reference system (x , y, z )p such that the unit-basis vectors
are chosen along the crystallographic axes a,b and c in mannitol. Thus a crystal plate cut at 45◦ to a and b is parallel to
(1, 1, 0)p‖[1 a/b 0]‖(1 b/a 0) in orthorhombic mannitol. The overall error is the sum of the errors of various sources and is a
measure either of the total error of the calibration or of the error in the measurement of the d coefficient.

Mannitol Mannitol Mannitol
KDP sphere sphere KDP (001) KDP (001) (1, 1, 0)p (0, 1, 1)p

Initial
polarization Circular Circular Linear Circular Circular Circular

L/d (mm) 6.0± 0.1 4.8± 0.1 0.342± 0.001 0.342± 0.001 0.470± 0.05 0.520± 0.005
w (type I) 3000± 300 2500± 300
w (type II) 1000± 200 700± 200
Transmission

filter 5± 0.6% 30± 4% None None None None
Calibration
constant K (au) 2400± 300 K (KDP)× 6 8500± 500 10 000± 1000 KDP circular KDP circular
υ0 (degrees) 5 −7 3 0.8 1 −1.5
ϕ0 (degrees) 3 −3
d coefficients d123 = −0.39 d123 = 0.08(2) d(KDP) d(KDP) 1/2(d231 +d123) 1/2(d213 +d312)

(pm V−1) d231 = 0.07(2) =0.06(1) =0.06(2)
d312 = 0.05(2)

Overall error Calibration d coefficient Calibration Calibration d coefficient d coefficient
20% 30% 7% 10% 15% 20%

case, spheres provide larger signals of the integrated SHG-
peak signal than do plates, for which the slightest defects
of the sample diminish the height of the SHG-matching
peaks drastically. Therefore these directions are usually
avoided in Maker fringe experiments. Larger signals allow
measurements with less intense initial light. For a large
number of crystals which decay rapidly if bombarded with
strongQ-switched infra-red pulses use of spheres may be
the only way to find thed coefficients.

Another weakness of spheres is that signals can be
observed in directions where SHG in theory is not possible.
These result from multiple reflections inside the sphere
and the conical refraction which brings deflected parts
of the initial beam into a phase-matching position (see
figure 4, type I phase matching in KH2PO4 for ϕ = 0
andυ ' 45◦). Although these forbidden signals are small,
they clearly indicate that there are limits to the accuracy of
the d coefficients determined with spheres.

4.2. Model calculations

The figure of merit (d2n−3) of mannitol, 0.0013 pm2 V−2,
is much smaller than that of KH2PO4, 0.045 pm2 V−2.
Therefore this investigation has only academic value, which
is to test the method and the model calculations.

From the DES model (table 2), a totally symmet-
rical d tensor was originally calculated withd123 =
0.21 pm V−1. This is much larger than that observed
(dmeasured123 = 0.06(2) pm V−1). However, the calculation
was based on the polarizabilitiesα derived from a fit of

calculated refractive indices to the experimental refractive
indices. In using both oxygens and carbons in the model,
a quite high polarizability for the carbons (0.2Å3) resulted

from the best fit (α oxygen= 1.9 Å
3
) to the refractive

indices. Thus, thed coefficients were calculated semi-
empirically, using only the crystal structure and the re-
fractive indices of mannitol. As has been described by
Kaminsky and Glazer (1997), there was a strong correla-
tion between the polarizabilities of oxygen and carbon and
almost no difference in the calculated refractive indices was
observed if the polarizability of carbon was set to the more
realistic, but still high, value of 0.05̊A3 and only the polar-
izability of oxygen was allowed to be adjusted. Although
the calculated refractive indices and optical gyration were
almost independent of the changed carbon polarizability,
the induced effects were calculated to be much smaller.
As a result, we foundα oxygen (modelled) = 2.27 Å3

anddcalc123 = 0.075 pm V−1. An even smaller value for the
carbons resulted in too large a deviation of the calculated
optical activity from the experimental values. The accord
between calculation and experiment is thus improved. With
the new set of polarizabilities, which are still well within the
accepted range of values found in the literature, we also find
better agreement between calculated and measured electro-
optical coefficients for mannitol:rexp123/231/312 = −0.23,
−0.2 and−0.16 pm V−1 for rcalc123/231/312 = −0.2, −0.25
and−0.25 pm V−1.
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Table 2. A comparison of measured d coefficients (pm V−1) and those calculated with the DES model for some substances.
α is the polarizability volume (Å3). The modelled polarizabilities, which were obtained from fitting the calculated refractive
indices to the experimental values, have to be compared with those given by Tessman et al (1953). References to structures
are 1, Landolt–Börnstein (1969); 2, le Page (1976); and 3, Kaminsky and Glazer (1996). References to experimental
d coefficients are a, Craxton (1981) and Veerabhadra et al (1978); b, Jerphagnon and Kurtz (1970) and Miller and Nordlund
(1970); and c, this paper.

Substance Structure Experimental Reference α (Tessman et al ) α model Calculation

KH2PO4 1 d123 = −0.39 a O: 1.8 O: 1.206 d123 = −0.56
K: 1 K: 0.642

P: 0.396
SiO2 2 d111 = −0.25 b O: 1.8 O: 1.903 d111 = −0.26

d123 = 0.007 Si: 0.04 Si: 0.2308 d123 = 0.044
C6H14O6 3 d123 = 0.06(2) c O: 1.8 O: 2.27 d123 = 0.075

C: 0.01 C: 0.05

4.3. Final conclusions

The theory needed for measurements using crystal spheres
has been outlined. When materials such as mannitol and
KH2PO4 have directions that allow one to establish phase
matching, measurement of the SHG efficiency can be
performed in order to find thed coefficients and phase-
matching loci. The accuracy of such determinations of
d coefficients should not be expected to be better than 20%.

Although it is possible to observe a stronger SHG
signal with spheres than it is with crystal plates, the great
difficulty in preparing a sphere most probably acts against
its routine use in the laboratory. The DES model, which
describes well thed coefficients of KH2PO4 and α-SiO2,
predicted a rather small SHG efficiency in mannitol. This
result was confirmed by experiment. Thus the DES model
may be useful in classifying non-linear materials ahead of
time. However, a further comparison of calculation and
measurement is needed in order to establish the reliability
of the DES model in general and especially for organic
compounds.

Appendix

The following describes briefly the equations involved in
relating thed coefficients to the experimental evidence. The
tensordijk (d coefficients) connects the induced electrical
polarizationP to the applied electric field vectorE of the
light wave:

Pi(2ω) = ε0dijkE(ω)jE(ω)k

(Kurtz 1975, Boyd and Kleinmann 1968, Ward and New
1968). For smalld coefficients, it follows from the exact
treatment of the intensity thatI (2ω) generated byI (ω), ω
is the circular velocity, is given by (Armstronget al 1962)

I2ω = 2ω2

ε0c3

d2
eff

n′2ωn′′2ω
L2I 2

ω

sin2 x

x2

x = Lω
c
(n′′ω − n′2ω) (type I)

x = L ω
2c
(n′ω + n′′ω − 2n′2ω) (type II)

where only those differences of refractive indices are
included which promise phase matchability (normal
dispersion andn′′ > n′). The dash and double-dash are used
to distinguish between the two allowed vibration modesE′ω,
E′′ω andE′2ω, E′′2ω normal to the wavevectork. The effective
d coefficient is given by

deff =
dijkE

′
i (2ω)E

′′
j (ω)E

′′
k (ω)

E′′2(ω)E′(2ω)
(type I)

deff =
dijkE

′
i (2ω)(E

′
j (ω)E

′′
k (ω)+ E′′j (ω)E′k(ω))

2E′(ω)E′′(ω)E′(2ω)
(type II)

whereL is the sample thickness andc is the velocity of light
in a vacuum. If the unit vectors0 denotes the direction of
the wavevector with respect to the optical reference system
e0
i and if we assume that thek vectors of incident and

emerging waves are both approximately parallel tos0, the
directions of theE vectors are found from

Ei ∝ s0
i

n2− n2
i

where ni are the principal refractive indices of the
indicatrix. In monoclinic and triclinic crystals theE vectors
have to be transformed with respect to the reference system
of the indicatrix according toe0

i = vijej with s0
i = vij sj ,

from which it follows thatEphysi = v−1
ij E

optic

j . Here s
is the wavevector with respect to the physical reference
system{ei}.

The problem now lies in calculating the set of refractive
indicesn′, n′′(ω), n′, n′′(2ω) which have to be substituted
for n in the equation above. Use is made of the Fresnel
equation

s0
i

n−2
i − n−2

s0
i = 0

which can be written asn4− Bn2+ C = 0;

B =
∑
i

s02
i (n

−2
j + n−2

k ) C =
∑
i

s02
i n
−2
j n−2

k

i, j, k cyclic 1, 2, 3

and finally (Yao and Fahlen 1984)

n′(n′′) =
√

2

[B + (−)(B2− 4C)1/2]1/2
.
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