Journal of Applied Crystallography ISSN 0021-8898 Editor: Gernot Kostorz

# From CIF to virtual morphology using the *WinXMorph* program Werner Kaminsky

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Appl. Cryst. (2007). 40, 382-385

Werner Kaminsky • WinXMorph

Journal of Applied Crystallography

ISSN 0021-8898

Received 21 December 2006 Accepted 24 January 2007

## From CIF to virtual morphology using the *WinXMorph* program

#### Werner Kaminsky

Department of Chemistry, Seattle, Washington, USA. Correspondence e-mail: kaminsky@chem.washington.edu

Crystal morphologies are predicted from data stored in files in the CIF format (crystallographic information file standard of the International Union of Crystallography) on the basis of the Bravais–Friedel, Donnay–Harker model. Several simple improvements to the calculation are introduced with *WinXMorph*, version 1.4.9, in conjunction with illustrations of the morphologies of quartz, sucrose, lactose, pyrite and lysozyme. The morphologies of the recently discovered pentamorphs of 1,8-dihydroxyanthraquinone are predicted. *WinXMorph* is available free-of-charge for educational use.

© 2007 International Union of Crystallography Printed in Singapore – all rights reserved

#### 1. Introduction

Who does not wonder what the crystals looked like from which X-ray structures have been reported? Abandoned is the tradition of illustrating morphology as in Groth's monumental compendium (Groth, 1906). The specific indices and sizes of observed crystal faces are no longer published, reducing the information to color, a rough size estimate, combined with teasing hints as to the habit ('plate', 'needle', 'prism'...), and surface characteristics ('dull', 'clear', 'metallic'...). Often crystals are disposed of after the structure has been determined. Optical goniometry is a lost art. For research related to growth of crystals and surface structure and reactivity, the lack of this information is regrettable. Moreover, the beauty of these crystalline forms is lost as well.

Here, I discuss how to recover lost morphologies from X-ray crystallographic data. The aesthetic aspects of crystals combined with virtual reality are contemporary ways of exciting a young student's interest in crystallography, as well as an aid in teaching the principles of crystal symmetry.

#### 2. Symmetry independence of faces, polarity and lustre

From the beginnings of X-ray crystallography, researchers have attempted to predict crystal shapes [Bravais–Friedel, Donney–Harker model, BFDH model (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937)] from metric data, point-group symmetry and the systematic absences, all available in each of today's crystallographic information files written in the CIF format.

When real crystals grow, the shapes are far from the ideal morphologies created when applying the point-group symmetries to a 'unique' set of crystal faces. Despite this, a realistically predicted morphology needs to include the growth differences between symmetry-independent faces. There may be symmetry-distinct faces that are nevertheless predicted by the simplest BFDH implementation to have the same central distance because considerations based entirely on symmetry do not contain information about the molecular or atomic structure of these faces, which would be different if they were not related by symmetry, and thus, should grow at different speeds. A refinement of growth rate predictions is generally achieved with surface energy calculations [*e.g.* Hartman–Perdok model periodic bond chain analysis (Borm, 1923; Hartman & Perdok, 1955;

Hartman, 1973), Ising model (Burton *et al.*, 1951; Jackson, 1958), attachment energy model (Berkovitch-Yellin, 1985), cellular automata (Wolfram, 2002), kinetic simulations (Rohl, 2003)]. Without this, the predicted morphology may not even be recognized as that of the specific crystal, even by the trained eye of a mineralogist, this despite the fact that no two crystals look the same.

To make matters worse, we cannot forget the influence of solvents on the crystal growth characteristics (Liu *et al.*, 1995; Benazet *et al.*, 2003). Are we then doomed to fail in our attempt to recover the crystal without a detailed treatment of the specific growth process?

I recently released a free-for-educational-use software package running under Microsoft Windows for drawing crystal shapes (Kaminsky, 2005) and have now implemented the BFDH model within that package, distributed under the name *WinXMorph*. Applying simple 'distortions' to a calculated morphology from the BFDH model, governed by refined symmetry considerations, helps to make predictions that are often closer to observed crystal habits than unmodified calculations and some intensive surface structure and interaction analysis calculations (of course, these calculations are of undisputed merit).

Quartz, space group  $P3_12$  or  $P3_22$ , may serve as an example. The pyramidal {101} and {011} faces are not symmetry related. However, central distances calculated with BFDH from evaluating the length of face normal vectors,  $|\mathbf{h}|$ ,  $\mathbf{h} = (101)$  or (011), will be identical, obviously, as axes **a** and **b** are of equal length, although the surface structures are different. The differences introduced by evaluation of the structure and surface characteristics calculations are much smaller than those of the grown crystals, reaching roughly 1%, whereas the real quartz sample shows on average a difference of 10% in the central distances between (101) and (011), not to mention that the different morphology calculation models do not agree on which form will grow faster (Nicolov & Woensdregt, 2002).

One could, however, introduce arbitrary factors deviating to a certain percentage from unity to scale the faces within a set of 'unique' crystal faces to introduce the expected symmetry independency which will bring the predicted morphology closer to reality. A repetition of the calculations with a statistically applied scale to the forms will in addition give an overview of possible shapes one would observe in the field (Fig. 1).

If the symmetry belongs to a polar point group, I would like to suggest here that one could scale faces on opposite sides of a polar axis differently to simulate the expected growth rate variations:





(a) Virtual quartz group. The shape was simulated with the modified BFDH model as well as rendered with WinXMorph, applying an up to 10% statistical scaling of independent faces, and standard textures (growth striations) of clear crystals were applied to the faces. Model crystals were then scaled and grouped. (b) Smoky quartz, with darker body, 20% variation between all faces. (c) Rose quartz with pink body and marbled surface. All models are freely moveable on the computer in real time. Real crystals: (d) author's photograph; (e) http://www.stonekeeper.com; (f) http://www.all-about-feng-shui.co.uk.



#### Figure 2

(a) Virtual sugar candy (sucrose), predicted with a standard 'dull surface' pattern and 50% polarity factor along the **b** axis. The shape is very close to the observed morphology for growth slightly above room temperature. (b)  $\alpha$ -Lactose monohydrate calculated with 90% polarity, and restriction to Miller indices not larger than 1. (c) Typical morphology of  $\alpha$ -lactose monohydrate.



#### Figure 3

(*a*) CIF syntax for lustre, faces, and central distances for the sugar model in Fig. 2. (*b*) 'Dull' lustre.

$$D_x = D_{x-\text{calculated}} \left[ 1 - p \operatorname{sgn}(h_x) h_i \middle/ \left( \sum_j h_j^2 \right)^{1/2} \right].$$
(1)

 $D_x$  is the central distance of face h,  $h_i$  are the Miller indices and p is the polarity, taking values between 0 and 1. Faces at larger angles towards the polar direction parallel to  $h_x \mathbf{a}_x^*$  should be less affected by the polarity. This is introduced by the geometric weight (square root of the sum of squared indices).

Sucrose (Wang *et al.*, 2000) and  $\alpha$ -lactose monohydrate (Clydesdale *et al.*, 1997) (Fig. 2) are good examples of the improved realism obtained this way.

The CIF format allows reports of hydrogen bonds, which are known to have a pronounced impact on the morphology (Docherty *et al.*, 1991). Along such bonds, growth rates are higher and a further refinement of the morphology is at hand when inspecting the reported bonds, provided they have been added to the CIF file.

Once a morphology has been created, the Miller indices and central distances should be saved. The International Union of Crystallography (IUCr) has devised a syntax (rarely used in the past) that allows the addition of this information and the surface properties to the CIF file. An example of such a listing is given for sugar (Fig. 3).

At the end of the day, however, real crystal faces are scratched or etched *etc.*, and reflect as well as refract light in characteristic ways. The *WinXMorph* program accommodates transparency and texture. In this way one can 'handcraft' museum-quality virtual crystals on the computer (Figs. 4 and 5).

#### 3. Application to polymorphism

#### 3.1. Lysozyme

A thorough morphology study of hen egg-white lysozyme was published by Matsuura & Chernov (2003) in which 'the strengths of intermolecular contacts (macro bonds) and the areas occupied by each contact on the molecular surface were estimated in four polymorphic modifications of lysozyme crystals based on the bond strengths between individual atomic pairs belonging to the molecules in contact' (Fig. 6).

In a protein crystal, polarity may not be that important. Thus, the calculations were carried out

with only up to 10% polarity for the monoclinic form. A perfect match of the BFDH model is observed for the tetragonal morphology. The orthorhombic crystals do not show the estimated {101} face, which is the fastest growing in the BFDH model.



#### Figure 4

Virtual amethyst aggregate created from a *WinXMorph* model assembled on a substrate model using VRLM commands. This image can be rotated in real time on the computer screen.



#### Figure 5

Virtual pyrite hand piece created from *WinXMorph* models and grouped using VRLM commands. This image can be rotated in real time and in any direction on the computer screen.

| Crystal data                               | 1                             | 2                                           | 3 4                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|--------------------------------------------|-------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Formula                                    | C14H8O4                       | $C_{14}H_8O_4$                              | $C_{14}H_{\$}O_{4}$                                                         | C14H8O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Color, habit, lustre                       | colorless prism<br>clear      | colorless prism<br>clear                    | colorless prism<br>clear                                                    | colorless prism<br>clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Crystal system                             | Tetragonal                    | Orthorhombic                                | Monoclinic                                                                  | Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Space group                                | P43212                        | P212121                                     | P21                                                                         | P1(#2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| a, Å                                       | 78.54                         | 56.44                                       | 26.90                                                                       | 27.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| b, Å                                       | 78.54                         | 73.73                                       | 58.95                                                                       | 31.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| c, Å                                       | 37.77                         | 30.43                                       | 31.33                                                                       | 34.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| α., °                                      | 90                            | 90                                          | 90                                                                          | 88.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| β, °                                       | 90                            | 90                                          | 111.9                                                                       | 108.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| γ.°                                        | 90                            | 90                                          | 90                                                                          | 111.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Observed                                   | {101}, {110}                  | {010}, {011}, {110}                         | $\{100\}, \{001\}, \{10-1\}, \{010\}$                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Calculated Matsuu-<br>ra et al., 2003      | {101}, {110}, {100},<br>{001} | {010}, {011}, {110},<br>{100}, {001}, {101} | {100}, {001}, {10-1}, {010},<br>{101}, {110}, {011}                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Extrapolated<br>Morphology<br>(BFDH-model) | (101)                         | (1 0 1)<br>(0 1 1)<br>(1 1 0)<br>(0 1 0)    | (11)<br>(10)<br>(11)<br>(01)<br>(10)<br>(01)<br>(10)<br>(01)<br>(10)<br>(10 | $(01\overline{1})  (010) \\ (\overline{1}10)  (\overline{1}11) \\ (\overline{1}0)  (\overline{1}11) \\ (\overline{1}0)  (\overline{1}0)  (\overline{1}0) \\ (\overline{1}0)  (\overline{1}0)  (\overline{1}0) \\ (\overline{1}0)  (\overline{1}0)  (\overline{1}0) \\ (\overline{1}0)  (\overline{1}0)  (\overline{1}0)  (\overline{1}0) \\ (\overline{1}0)  (\overline$ |  |

#### Figure 6

Polymorphs of lysozyme (Matsuura & Chernov, 2003) and morphology calculations.

| Crystal data                                                                      | 1                                      | 5                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                    | 4                                                                                                                                                           |
|-----------------------------------------------------------------------------------|----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula                                                                           | C14H8O4                                | C14H8O4                      | C14H8O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C14H8O4                                                                                                                              | C14H8O4                                                                                                                                                     |
| Color, habit,<br>lustre                                                           | orange, plate<br>(fragment) clear      | red-orange, 'block'<br>clear | orange, needle<br>(fragment), clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | orange, prism<br>clear                                                                                                               | orange, needle<br>(fragment) clear                                                                                                                          |
| Sample size (mm)                                                                  | 0.22x0.12x0.07                         | 0.37x0.34x0.28               | 0.24x0.07x0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.43x0.43x0.12                                                                                                                       | 0.26x0.09x0.08                                                                                                                                              |
| Crystal system                                                                    | Tetragonal                             | Tetragonal                   | Orthorhombic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triclinic                                                                                                                            | Monoclinic                                                                                                                                                  |
| Temperature                                                                       | 130(2)                                 | 295(2)                       | 130(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130(2)                                                                                                                               | 110(2)                                                                                                                                                      |
| Space group                                                                       | P41 (#76)                              | P41212 (# 92)                | Pca2 <sub>1</sub> (#29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1(#2)                                                                                                                               | $P2_1/n$ (#14)                                                                                                                                              |
| a, A                                                                              | 5.7230(3)                              | 5.7440(6)                    | 21.578(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2110(15)                                                                                                                          | 7.2930(5)                                                                                                                                                   |
| b. Å                                                                              | 5.7230(3)                              | 5.7440(6)                    | 3,7660(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3080(15)                                                                                                                          | 9.5001(7)                                                                                                                                                   |
| c, A                                                                              | 30.923(2)                              | 31.393(3)                    | 24.683(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.776(3)                                                                                                                            | 14.7208(11)                                                                                                                                                 |
| α, °                                                                              | 90                                     | 90                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.058(8)                                                                                                                            | 90                                                                                                                                                          |
| β, °                                                                              | 90                                     | 90                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.905(9)                                                                                                                            | 91.634(2)                                                                                                                                                   |
| γ, °                                                                              | 90                                     | 90                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.995(11)                                                                                                                           | 90                                                                                                                                                          |
| Directional<br>hydrogen bonds                                                     | ca. along <100>                        | ca. along <100>              | unspecific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unspecific                                                                                                                           | unspecific                                                                                                                                                  |
| Observed faces                                                                    | $(001), (00\overline{1}), (10\pm 1)$   | {001}, {101}                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | {100}, {010}, {001}                                                                                                                  | N/A                                                                                                                                                         |
| Extrapolated<br>morphology                                                        | (0 0 Ī)<br>(1 0 Ī) <sup>(0 0 1</sup> ) | (0 0 1)                      | $(0 \overline{1} 3) (\overline{1} 0 0) (\overline{1} 0 \overline{1}) (\overline{1} $ | $ \begin{array}{c} \hat{1} \\ (1 & 0 & 0 & 1) \\ (1 & 0 & 0 & 1 & 1) \\ (1 & 0 & 0 & 1 & 1) \\ (1 & 1 & 1 & 0 & 1 & 0) \end{array} $ | $ \begin{array}{c} (\overline{1} \ 0 \ 1) \\ (\overline{1} \ \overline{1} \ 0) \\ (\overline{1} \ 0 \ \overline{1}) \\ (0 \ 0 \ \overline{1}) \end{array} $ |
| Birefringence,<br>Δn micrographs<br>& eigenmodes of<br>slow axis<br>(white lines) |                                        | T. PZ                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      | sinδ <br>1.0<br>-0.5<br>-0.5<br>-0.5<br>-0.5                                                                                                                |
| Extinction angle<br>micrographs of<br>eigenmodes of<br>slow axis                  |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      | φ<br>- 90<br>- 90<br>- <u>n</u> γ                                                                                                                           |

#### Figure 7

Morphological details of the known polymorphs in 1,8-dihydroxyanthraquinone. The optical micrographs of the birefringence help to differentiate between the polymorphs. Polymorph 1, calculated with 20% polarity, is known to show strong anomalous birefringence in contrast to 5, which is almost perfectly extinct along the optic axis with a small reminiscence of [101] growth sectors. Polymorph 3 exhibits extinction at an angle close to  $135^{\circ}$  and the intrinsic birefringence is fairly strong. When looking along (001), the crystals are pseudo orthogonal at an angle of  $\gamma = 88.995$  (11)°. No micrograph was available for polymorph 4. All samples were *ca* 1 mm across. Because of strong linear dichroism, the extinction angle shown for polymorph 2 appears  $45^{\circ}$  clockwise rotated. The phase factor  $\delta = 2\pi \Delta n L/\lambda$  is related to the birefringence,  $\Delta n$ , wavelength of light,  $\lambda$ , and sample thickness, *L*. Further details of polarimetric methods used here are outlined elsewhere (Kaminsky *et al.*, 2004).

The estimates for the monoclinic case include the observed faces, but also several additional faces. Including a polarity factor did not improve the estimate.

There are no indexing data for the triclinic crystal faces available. The estimated morphology will give a first impression of what the crystals might have looked like of which the structure was determined.

#### 3.2. 1,8-Dihydroxyanthraquinone

1,8-Dihydroxyanthraquinone (DHA) crystallizes under different conditions in five different polymorphs (Fig. 7) (Claborn *et al.*, 2007; Zain & Ng, 2005). The tetragonal (polymorphs 1 and 5) and

orthorhombic (2) modifications were indexed *via* X-ray diffraction on a Nonius–Bruker KAPPA CCD X-ray diffractometer (Mo  $K\alpha$  radiation).

Polymorph 1 was grown from the slow evaporation of a 50:50 (v/v) acetone/acetonitrile solution of 1,8-dihydroxyanthraquinone (Aldrich) over the course of 2–3 days to a size of 0.5 cm  $\times$  0.5 cm  $\times$ 100 µm. The crystals were often raised in the center and along the borders between lateral growth sectors. Needles of polymorph 2, typically 500 µm long and 10–70  $\mu m$  wide, were formed in the same way as 1 but with faster evaporation rates ( $\sim$ 24 h). On average, in the growth experiments of polymorph 1, one in a hundred of the prismatic plates belonged to polymorph 3. Form 4 was obtained by sublimation at 393-398 K under vacuum (3-5 torr). Form 5 was grown by evaporation from pyridine. Forms 1, 2, 4, and 5 melt at 467-469 K and 5 transforms under cooling into 1, exhibiting a domain structure related by a twofold rotation along [110].

Polymorphs 1 and 5 are of special interest as both crystallize as wafer-thin plates with  $\{001\}$  faces of several millimetres across, to which the extinction condition of a  $4_1$  screw axis would have to be applied, which causes an increased prismatic appearance. The growth of polymorph 5 is slightly more prismatic than 1, although structurally very closely related to 1, with an additional  $2_1$  screw axis along  $\langle 100 \rangle$ .

When trying to calculate the morphology for 1 and 5 without further modifications, one would obtain a compact prism similar to 3, which is not observed in either of these polymorphs

Additional inspection of the structure is required. From a packing diagram of the structure or a table of hydrogen bonds, one sees intermolecular hydrogen bonds between the ketone and one hydroxyl group along  $ca \langle 100 \rangle$ , and strong dipolar coupling forces along  $\langle 110 \rangle$  in each of the four levels per unit cell perpendicular to the 4<sub>1</sub> screw (Claborn *et al.*, 2003). Only weak van der Waals forces connect the molecules along the **c** axis. The projection of the net-dipole onto the **c** axis is negligible. The strong dipoles will promote growth of the {110} faces. The directional hydrogen bonds will promote growth of the {100} faces (Fig. 8).

We may expect that the four hydrogen bonds and dipoles per unit cell in polymorphs 1 and 5 effectively outbalance the  $4_1$  screw-axis restriction to



#### Figure 8

Packing diagram of DHA, polymorph 1. Along  $ca \langle 100 \rangle$  are found hydrogen bonds between the hydroxyl and ketone. A permanent dipole points along  $ca \langle 110 \rangle$ . Weak van der Waals forces along **c** are indicated by the dotted line between the hydroxyl and aromatic hydrogen.

(001) and ( $\overline{001}$ ) faces. The thin shapes calculated for polymorphs 1 and 5 in the case that the 4<sub>1</sub> screw was completely neglected are much closer to the observed morphology. The 2<sub>1</sub> screw axis in 5 has the additional effect on the morphology of eliminate the {100} faces. Because of the strong structural correlation between 5 and 1, it could be speculated that polymorph 1 possesses a pseudo 2<sub>1</sub> axis that would in addition elongate growth along  $\langle 100 \rangle$ . This may explain why {100} faces are not observed in 1 as well as 5.

Of polymorph 2, it is only known that the **b** axis is along the needle elongation, which is confirmed in the BFDH calculations. Crystals of 3 were similar to 1 but thicker, which the BFDH model confirms. The prismatic character of 4 does not match the reported crystal size; here the predicted shape is unlikely.

Polar factors of up to 20% were allowed in the *WinXMorph* calculations for polymorph 1, which eliminated one set of {101} faces, but similar large statistical variances were found to have little effect in the other polymorphs.

#### 4. Summary

*WinXMorph* allows a 'best guess' recovery of the crystal habit of an incompletely edited CIF file, provided that hydrogen bonds and

possible dipoles are analyzed for a further refinement of the model. The ability to introduce statistical or polar variances and face lustre results in realistic virtual crystal models.

I am grateful for support by the National Science Foundation (CHE-0092617). Thanks are also owed to Bart Kahr for providing the polymorph 5, to Kacey Claborn for the second polymorph 2 of 1,8-dihydroxyanthraquinone, and to Massimo Moret for providing information on polymorph 4.

#### References

- Benazet, S., Jacob, G. & Pepe, G. (2003). Propellants Explosives Pyrotechnics, 28, 287–295.
- Berkovitch-Yellin, Z. (1985). J. Am. Chem. Soc. 107, 8239-8253.
- Borm, M. (1923). Atom Theorie des festen Zustandes, 2nd ed., p. 538. Leipzig: Engelmann.
- Bravais, A. (1866). Du Cristal Considere Comme un Simple Assemblage de Points, Etude Cristallographiques. Paris: Gauthier-Villars.
- Burton, W. K., Cabrera, N. & Frank, F. C. (1951). Philos. Trans. R. Soc. 243, 299–358.
- Claborn, K., Kaminsky, W., Kahr, B., Moret, M. & Rohl, A. L. (2007). Cryst. Growth. Res. Submitted.
- Claborn, K., Puklin-Faucher, E., Kurimoto, M., Kaminsky, W. & Kahr, B. (2003). J. Am. Chem. Soc. 125, 14825–14831.
- Clydesdale, G., Roberts, K. J., Telfer, G. B. & Grant, D. J. W. (1997). J. Pharm. Sci. 86, 135–141.
- Docherty, R., Clydesdale, G., Roberts, K. J. & Bennema, P. (1991). J. Phys. D. Appl. Phys. 24, 89–99.
- Donnay, J. D. H. & Harker, D. (1937). Am. Mineral., 22, 446-467.
- Friedel, G. (1907). Bull. Soc. Fr. Mineral. 22, 326-455.
- Groth, P. (1906). Chemische Kristallographie. Leipzig: Engelmann.
- Hartman, P. (1973). Crystal growth: An Introduction, p. 367. Amsterdam: North-Holland.
- Hartman, P. & Perdok, W. G. (1955). Acta Cryst. 8, 49-52.
- Jackson, K. A. (1958). *Liquid Metals and Solidification*, p. 174. Cleveland: American Society of Metals.
- Kaminsky, W., Claborn, K. & Kahr, B. (2004). Chem. Rev. Soc. 33, 514– 525.
- Kaminsky, W. (2005). J. Appl. Cryst. 38, 566-567.
- Liu, X. Y., Boek, E. S., Briels, W. J. & Bennema, P. (1995). *Nature (London)*, **375**, 342–345.
- Matsuura, Y. & Chernov, A. A. (2003). Acta Cryst. D59, 1347-1356.
- Nicolov, M. F. & Woensdregt, C. F. (2002). J. Appl. Cryst. 35, 491-496.
- Rohl, A. L. (2003). Curr. Opin. Solid State Mater. Sci. 7, 21–26.
- Wang, B., Silber, C. & Follner, H. (2000). Chin. Sci. Bull. 45, 1468-1471.
- Wolfram, S. (2002). A New Kind of Sciences. Champaign: Wolfram Media.
- Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61 02921-02923.