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The optical rotation (OR) of CsLiB6O10 (CLBO, space group I �442d) along the a

axis has been determined by the HAUP method [Kobayashi & Uesu (1983). J

Appl. Cryst. 16, 204–211] at a wavelength of 632.8 nm and by the TILTER

method [Kaminsky & Glazer (1996). Ferroelectrics, 183, 133–141] at 532 nm and

650 nm. The respective rotatory powers were found to be 17 (1), 24 (2) and

19 (2)� mm�1. The absolute chirality has been established by comparing Bijvoet

differences, {hkl} and {k �hhl}, on the same crystal on which OR was measured.

Atomic positions and electron density Fourier peak heights were exploited as

input for semi-empirical calculations of refractive indices and OR, using

WinOPTACT [Glazer (2002). J. Appl. Cryst. 35, 652] with only one free

parameter fitted to match the average refractive index.

1. Introduction

Cesium lithium borate, CsLiB6O10 (CLBO), is attractive

because not only does it have excellent nonlinear optical

properties, it is easily grown from melt or from solution (Mori

et al., 1995). Among other borate crystals, it has been tested

for solid-state UV laser applications (Mori et al., 1995). CLBO

is monophasic between room temperature and 1073 K, and

transparent between 180 and 2750 nm. The material is

remarkable for its efficient fourth (266 nm) and fifth (213 nm)

harmonics generation with Nd:YAG laser irradiation and its

optical stability (Takei et al., 1997). On the other hand, CLBO

single crystals tend to crack under ambient conditions (Pang et

al., 2002; Sasaki et al., 2000).

Despite the potential technical importance of CLBO, we

wanted to understand the chiro-optical properties of CLBO by

calculating refractive indices and optical rotation using the

atomic structure and empirical polarizability volumes as

parameters. These calculations employ the OPTACT model of

Devarajan and Glazer (Devarajan & Glazer, 1986; Glazer,

2002; Mucha et al., 1996) (see Appendix A). The optical

rotation is determined experimentally in this report. Since it is

important to estimate the reliability of experimental data, two

different techniques to obtain OR in birefringent samples are

tested on the same crystal.

CLBO crystallizes in the tetragonal system, space group

I �442d with a = 10.49 and c = 8.94 Å (Sasaki et al., 1995). CLBO

is optically uniaxial negative and the dispersion of the

refractive indices were obtained by Mori et al. (1995):

n2
o ¼ 2:208964 þ 1:0493� 10�2

�2 � 1:2865� 10�2
� 1:1306� 10�2 �2 ð1Þ

and

n2
e ¼ 2:058791 þ 8:711� 10�3

�2 � 1:1393� 10�2
� 6:069� 10�3 �2 ð2Þ

(wavelength expressed in mm).

Optical rotation is described by a symmetric axial tensor.

For CLBO in the point group �442m, it has two non-zero

components, �11 = ��22. The extreme values of OR are along

the a and b axes. These axes cannot be distinguished by the

crystal morphology. In addition, the space group is non-

enantiomorphic. We used anomalous X-ray scattering to

distinguish the a and b axes from each other on the basis of a

set of atomic coordinates (see below). All tensors in the

following are given with reference to the assignment of the

physical reference system ei, which, by convention, is related

to the crystallographic a, b and c axes (see for example

Haussühl, 1983), as e2||b*, e3||c, e1||e2 � e3. In the case of

CLBO crystal, e1||a, e2||b and e3||c.

To measure OR along the a or b axis in CLBO, one has to

deconvolve the influence of linear birefringence (�n = n00 �
n0). A practical solution to this difficult task was published by

Kobayashi & Uesu (1983) who called their method HAUP

(high-accuracy universal polarimetry). This method, however,

fails for specific values of birefringence and additional tech-

niques were introduced to improve HAUP. Kaminsky &

Glazer (1996) proposed the TILTER method, which circum-

vented the limitations of HAUP by modulating the birefrin-

gence, as is done similarly in the Maker fringes technique

(Herman & Hayden, 1995). The TILTER setup is less

expensive and faster than the established HAUP apparatus in

several laboratories worldwide. We set out to determine

whether the simpler device would reach the precision of the

standard HAUP setup.

We have determined the optical activity of a CLBO sample

using the HAUP setup designed in the laboratory of the
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University of La Laguna (ULL) (Gomez & Hernández, 1998;

Hernández-Rodriguez et al., 2000; Herreros-Cedrés et al.,

2002, 2003) and the TILTER setup designed by W. Kaminsky

in the Chemistry Department of the University of Washington

(UW) (Kaminsky, 1996, 1997a,b; Mucha et al., 1997; Kim et al.,

2001; Kaminsky et al., 2002) for comparison.

Herein, a detailed comparison of the two methods is

presented.

2. Description of the HAUP and TILTER methods

In a typical polarimetric system, the intensity of light after

passing through a polarizer, chiral anisotropic sample, and

analyzer contains all the information that is needed for

extracting OR. Common to HAUP and TILTER experiments

is a sample placed between two orthogonal polarizers at

extinction angle �0 towards the polarizer. This situation can be

studied using the Jones matrix formalism (Appendix B). The

intensity of the light passing through polarizer, sample and

analyzer, is written approximately as a biquadratic polynomial

that is normalized to the amplitude of Y2:

I=I0 ¼ a0 þ a1Y þ a2� þ a3�Y þ a4�
2 þ Y2; ð3Þ

where Y is the rotation angle of the analyzer, which is

considered to be small (less than 1�). Depending on method, �
and the coefficients ai are expressed as shown below.

In the HAUP setup at ULL, the sample and analyzer are

rotated by small angles � and Y, while the polarizer is fixed. In

this case the coefficients ai are:

aH1 ¼ �2
�L

�
� p

� �
sin �þ 2�Y þ 2�0ð1� cos �Þ; ð4Þ

aH2 ¼ 2ðpþ qÞ sin �þ 4�Y sin2 �=2þ 4�0ð1� cos �Þ; ð5Þ

aH3 ¼ aH4 ¼ 4 sin2 �=2; ð6Þ
where p and q are the residual ellipticities of the polarizer and

analyzer, respectively, �Y is the error in the determination of

the position of the crossed polarizers, � is the phase difference

due to linear birefringence �n (and OR), � is the specific

rotatory power and L is the thickness of the sample.

In the TILTER system at UW, the polarizer and analyzer

are rotated by angles � and Y with respect to the sample. In

this case, the coefficients of equation (3) can be written as:

aT1 ¼ 2 � �L

�
þ p

� �
sin �þ 2�Y � 2�0ð1� cos �Þ; ð7Þ

aT2 ¼ �2
�L

�
þ q

� �
sin �þ 2�Y cos �þ 2�0ð1� cos �Þ;

ð8Þ

aT3 ¼ 2 cos �; ð9Þ
and aT4 = 1.

The optical parameters are obtained from aH3 (aT3) in the

HAUP (TILTER) method and from the coefficient

y ¼ aH1 �
aH2

2
¼ aT1 þ aT2

2

¼ p� q� 2
�L

�

� �
sin �þ 2�Y cos2ð�=2Þ: ð10Þ

In the case of the HAUP method, phase factor � and OR

are modulated with the temperature, while in the TILTER

technique the modulation of � and OR (due to its anisotropy)

is established by tilting the sample by angle � around the t axis

(Fig. 1b) parallel to the polarizer direction.

The effects of parasitic ellipticities (p, q) are eliminated

following the method proposed by Moxon & Renshaw (1990),

from the average of two successive experiments with the

crystal rotated by 90� around the beam direction. The phase �
and also the value of the misalignment of polarizer and

analyzer, (�Y) differ in sign between the successive measure-

ments when the crystal is rotated by 90�. The average of the

coefficients y and y90� for the two extinction angles (0 and 90�)
of the crystal is

�yy ¼ yþ y90�

2
’ �2

�L

�
sin �þ ð�Y � �Y90� Þ cos2ð�=2Þ; ð11Þ

where it has been taken into account that the p and q para-

meters practically cancel out (Hernández et al. 2000):

ðp� qÞ � ðp� qÞ90�
�� ��� 4

�L

�

����
����: ð12Þ

HAUP systems require a very careful adjustment to mini-

mize �Y, while in the TILTER experiment �Y is calculated

from a Fourier analysis with respect to the phase modulation
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Figure 1
Schematic representation of the HAUP (a) and TILTER (b) setups. L:
laser; P: polarizer; S: sample; A: analyzer; D: detector; k: wavevector; Y:
rotation angle of analyzer; �: rotation angle of sample around an axis
along k in (a), rotation angle of polarizer in (b); x, t: TILTER axes; �: tilt
angle around an axis along t.
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to remove �Y from the final OR. These equations only have

meaning for measurements far from the optic axes.

3. Experimental

CLBO crystals, supplied by Molecular Technology GmbH

(Berlin, Germany), were of very good optical quality (trans-

parency and homogeneity, with well-polished faces). The

measurements were carried out on a (100) cut (see below) of

CLBO with 0.620� 0.005 mm thickness. The HAUP system at

ULL (Fig. 1a) measured OR in the temperature range

between 293 and 423 K (in steps of 5 K) at a wavelength of

632.8 nm over a cross section of 2 mm, while the TILTER at

UW (see Fig. 1b) was set to room temperature and operated at

wavelengths of 532 and 650 nm; effective cross section

0.05 mm; tilt angle � varied between �15�, in steps of 1�.
Table 1 lists the refractive indices calculated from equations

(1) and (2) along with the birefringence for these wavelengths.

3.1. Modulation of phase with the temperature and with the

tilt angle

Fig. 2 shows the temperature dependence of the experi-

mental values of the aH3 HAUP coefficient derived from

equation (3) at a wavelength of 632.8 nm, taking into account

the average of parameter aH3 of two consecutive extinction

directions (0 and 90�) of the sample. The solid line represents a

linear regression to the temperature variation of the phase �
in first approximation to equation (13) (Fig. 3):

�n ¼ �

2�L
�T0
þ @�
@T
ðT � T0Þ

� �
¼ �n½1þ kðT � T0Þ�;

ð13Þ
where � is the wavelength of the light. The linear temperature

coefficient k = 2.4 (3) � 10�6 K�1. This result is consistent

with the thermo-optic coefficients reported previously for

CLBO (Unemura, 1997; Unemura et al., 1997; Ryu et al.,

1998).

The variation of the aT3 TILTER coefficient is drawn in

Fig. 4 at a wavelength of 650 nm. Open (i) and filled circles (ii)

represent the values of aT3 for two consecutive extinction

directions of the crystal (the sample is rotated by 90� between

the two experiments). Appendix C discusses the analytic

expressions relating � to tilt angle �:

ðiÞ � ¼ 2�

�
L n2

o � sin2 �
� �1=2� n2

e �
n2

e

n2
o

sin2 �

� �1=2
" #

; ð14Þ
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Table 1
Refractive indices and birefringence of CLBO crystal at the wavelengths
used in this work (Mori et al, 1995).

� (nm) no ne �n

532 1.4982 1.4454 0.0528
632.8 1.4938 1.4418 0.0520
650 1.4934 1.4414 0.0520

Figure 2
Temperature dependence of the mean HAUP parameter aH3 for the
(100)-cut sample of CLBO.

Figure 3
Variation with the temperature of the experimental values of the phase
for the (100) plane of CLBO. The solid line represents the linear fit of the
phase to the temperature, equation (13).

Figure 4
Dependence on the tilt angle of the TILTER parameter aT3, where open
and filled circles are the experimental values for the no||t and ne||t cases,
respectively. Lines represent the best fit to equation (9).
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ðiiÞ � ¼ 2�

�
L ðn2

o � sin2 �Þ1=2 � ðn2
e � sin2 �Þ1=2

� 	
: ð15Þ

The solid lines in Fig. 4 represent the best fit to equation (9)

with � given by expression (14) or (15). The variation of �
with the tilt angle is also represented in Fig. 5 for two conse-

cutive extinction directions of the crystal, where open (i) and

filled (ii) circles are the measured � and the solid (i) and

dashed (ii) lines represent the least-squares regressions of

expressions (14) or (15), respectively.

3.2. Determination of rotatory power for the (100) plane of

CLBO crystal

The rotatory power varies with the direction of the wave

vector:

� ¼ �11 sin2 ’ cos2 � þ �22 sin2 ’ sin2 � ¼ �11 sin2 ’ cos 2�;

ð16Þ
where ’ is the angle between the wavevector and the c axis,

and � the angle in the (ab) plane.

In the HAUP experiment, assuming that the light beam is

normally incident to the (100) plane of the sample, the rota-

tory power can be obtained from equation (11) with � = �11.

Fig. 6 shows the behaviour of the ‘ellipticity’ signal �0:

�0 ¼ �L

�
sin �; ð17Þ

where the solid line corresponds to the linear regression to

equation (17). The value of optical rotation along [100] was

17 (1)� mm�1 at 633 nm (positive value: clockwise rotation of

the plane of polarization facing the light source).

In TILTER measurements, the situation is more complex.

Experiments for 0 and 90� extinction settings of the sample

relate to disparate expressions of � and OR:

(i) The optical activity varies from �11 for � = 0� towards �22

according to

� ¼ �11 cos2 �� �11 sin2 �; ð18Þ
where cos2� = (cos2�e cos2�o)1/2; � is the tilt angle inside the

sample. This geometric averaging is permissible in this case as

their values do not differ substantially. For the angle of inci-

dence � = 15� (�e = 10.33� and �o = 9.98�) differ by only 5 �
10�3. The sin2 term in equation (18) does not exceed 3% at

maximum tilt and is neglected here.

(ii) In this case, the expression for the optical activity as a

function of � leads to

� ¼ �11 cos2 �: ð19Þ
In addition to equations (18) and (19), one has to take

account of an increase in optical path through tilting the

sample.

In the TILTER experiment, the specific rotatory power is

obtained from equation (17) with � given by (18) for the

ordinary index parallel to the tilter axis t, or (19) for the

extraordinary index parallel to t. In Fig. 7, the experimental

values �yy, filtered to show the ‘ellipticity’ signal, are represented

for two consecutive extinction positions of the sample at a
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Figure 5
Variation with the tilt angle of the phase, where open and filled circles are
the experimental values for the no||t and ne||t cases, respectively. Solid and
dashed lines represent the best fit to equations (14) and (15).

Figure 6
Dependence on temperature of the so-called ‘ellipticity’ signal in the
HAUP method, with the solid line the best fit to equation (17).

Figure 7
Dependence on tilt angle of the ‘ellipticity’ signal in the TILTER method.
Open and filled circles are the experimental values and solid and dashed
line represent the best fit to equations (17)–(19) for the no||t and ne||t
cases, respectively.
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wavelength of 650 nm, where the solid lines represent the best

fits to equation (17) with � given by (18) (open circles) or by

(19) (filled circles). The average optical rotation was found to

be 19 (2)� mm�1. Similarly, Fig. 8 shows the dependence of

phase and ‘ellipticity’ with the tilt angle for the (100) plane of

CLBO at a wavelength 532 nm, with an optical rotation of

24 (2)� mm�1.

The representation surface (longitudinal effect) for OR at a

wavelength of 632.8 nm has been drawn in Fig. 9 (Wintensor;

see Kaminsky, 1997b, 2000a,b).

3.3. Absolute indexing

The absolute optical configuration for a given crystal

structure in this case has to specify if the positive optical

rotation relates to the a or b axis (Glazer & Stadnicka, 1986,

1989).

When assigning the indices to the faces of a crystal, it is

convenient to calculate first the intensity difference of scat-

tered X-rays between pairs (hkl) and ðk �hhlÞ from the known

structural model

�I

I
¼ IðhklÞ � Iðh �kklÞ

1
2½IðhklÞ þ Iðh �kklÞ� ð20Þ

in order to find those reflections sensitive to anamolous

dispersion. The crystal structure coordinates in Table 2 were

taken as a reference. The calculated differences, using the

program Crystallographica (Oxford Cryosystems, Oxford,

UK), are listed in Table 5 (Appendix D). If the experiment

shows the same differences by and large, the assignment of

indices in the X-ray data can be taken as absolute. If the

differences consistently exhibit the opposite sign, the indices

have to be transformed to match the reference structure. Our

observation is: seven disagreements and three agreements for

Friedel pairs with expected difference larger than 5%. The

Flack enantiopole parameter was 0.72 (24). The polished face

through which the optical rotation was determined was

assigned (010) by the software. Taking account of the sensitive

Friedel pairs and the Flack enantiopole parameter, which

imply a rotation by 90� around the c axis, the polished face

refers to the structure in Table 2 as a (100) face. Details of the
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Figure 9
The gyration surface of CLBO crystal at room temperature and for a
wavelength of 632.8 nm. The values correspond to the optical rotatory
power (� mm�1). White and black areas represent the positive and
negative gyrations.

Table 2
Atom coordinates for absolute indexing of the CsLiB6O10 sample and
experimental Fourier peak maxima.

Atom x y z Peak (a.u.)

Cs1 0 0 0 4503
Li1 0 0 0.5 123
B1 0.2326 (7) 0.1484 (7) 0.5601 (9) 218
B2 0.25 �0.0244 (8) 0.375 189
O1 0.1022 (5) 0.1444 (5) 0.5703 (7) 424
O2 0.2994 (7) 0.25 0.625 399
O3 0.3020 (5) 0.0575 (5) 0.4948 (7) 485

Figure 8
Tilt scan and fit of the ellipticity and the coefficient aT3 for the (100) plane
of CLBO at a wavelength of 532 nm. Experimental results for the
wavevector tilted towards ne are marked by open circles and for the
wavevector tilter towards no by filled circles. Solid and dashed lines are
calculated.
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X-ray structure refinement are given in Appendix D. Thus we

have observed a positive (clockwise) OR along the a axis.

4. Discussion

4.1. Measurement of optical rotation

The HAUP and the TILTER method agree well within the

standard deviations of the individual experiments, bearing in

mind that the rotatory power is proportional to ��2:

24 (2)� mm�1 and 19 (2)� mm�1 at 532 and 650 nm (TILTER),

and 17 (1)� mm�1 at 632.8 nm (HAUP) along the [100]

direction. Only once in the past has the TILTER method been

compared with a HAUP system (temperature and wavelength

modulated) on the same sample, also showing good agreement

(Kaminsky, 1996). Are there situations where one method is

better than the other?

It is obvious that in cases of small thermo-optic coefficients

it is better to use a TILTER setup. However, the theoretical

description for the phase in the TILTER method is more

complicated. In fact, the TILTER requires a detailed knowl-

edge of the indicatrix of the sample and the sample orienta-

tion. Nevertheless, the TILTER’s analytical description is

advantageous compared with HAUP’s empirical temperature

variation of refractive indices, which can be complicated in the

vicinity of a phase transition. The output of the TILTER

method includes refined values of the refractive indices rela-

tive to that along the tilt axis and anisotropy of optical rotation

in a single experiment, while the HAUP method refines only

the phase and OR normal to the wavevector and the variation

of both depends only on the temperature or wavelength.

Sufficient modulation with the TILTER method may be

difficult to achieve for light incident along n� in biaxial

samples, or in case of very thin samples.

The TILTER device measures OR much faster than stan-

dard HAUP systems and with small sample cross sections,

enabling sample scanning for OR imaging (Kaminsky, 2000b).

4.2. Calculation of optical rotation

We set out to calculate the optical rotation of CLBO using a

dipole–dipole interaction model. This requires atomic elec-

tronic polarizabilities as input. The structure of CLBO consists

of ionic and covalent bonds. It was observed earlier that the

bond character is correlated with the ellipsoidal representa-

tions of the thermal motion and inversely related to that of the

polarizability volumes of the single atoms (Glazer & Stad-

nicka, 1986). In addition, the polarizability volumes are

related to the electron density of the atoms as derived from an

X-ray structure determination. The calculation of OR and the

refractive indices used in WinOPTACT (Devarajan & Glazer,

1986; Glazer, 2002; Mucha et al., 1996) uses the anisotropic

polarizability volumes as input (see Appendix A). We tried the

following models.

(i) Use of polarizability volumes as published by Tessmann

et al. (1953).

(ii) Use of isotropic polarizability volumes scaled to the

Fourier peaks (Newkirk, 1972; Claborn et al., 2002) Fx of the

xth atom with only one free scaling parameter S to reproduce

the average experimental refractive index: �x = SFx. This

approach reflects that the polarizability is, in classic electronic

polarizability theory, proportional to the number Zi of elec-

trons of atom i: h�i = Zie
2/m!2

0, where e is the electron charge,

m its mass and !0 is the frequency of vibration of the elec-

tronic shell, which differs between atoms.

(iii) Use of only one free scaling parameter S, where in first

approximation the diagonal coefficients of the polarizability

volumes are obtained from the diagonal thermal coefficients

uii according to

ð�iiÞx ¼ S Fx

ðuiiÞ�1

1
3

P3
i¼1 ðuiiÞ�1

: ð21Þ

(iv) Treatment of the system B–O equally as a result of the

covalent character of the bond that leads to an electron

distribution that is no longer sufficiently well approximated by

point dipoles. When the polarizability volume of Li+ is fixed

(its value was found to be affecting the system only margin-

ally), the polarizability volumes for the B–O system and Cs+

can be found objectively from a least-squares fit to the

experimental refractive indices.

The results are summarized in Table 3. The best fit of data

comes from model (iv), which agrees excellently in its calcu-
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Table 3
Input polarizability volumes (Å3) for calculations of optical rotation �11 (� mm�1) for different models (i)–(iv), along with diagonal elements of the
thermal parameters and the maximum Fourier peaks from the X-ray structure experiment of this report (Table 2), at wavelength 632.8 nm.

(i) (ii) (iii) (iv)
h�i h�i �11 �22 �33 h�i Fourier peak Zi

Cs+ 3.0 6.59 6.13 6.13 6.4 7.987 4503 54
Li+ 0.03 0.18 0.22 0.22 0.09 0.2 123 2
B13+ 0.01 0.31 0.32 0.34 0.30 0.441 218 2
B23+ 0.01 0.27 0.33 0.33 0.10 0.441 189 2
O12� 1.5 0.62 0.72 0.62 0.47 0.441 424 10
O22� 1.5 0.58 0.34 0.56 0.79 0.441 399 10
O32� 1.5 0.71 0.72 0.65 0.73 0.441 485 10

Calculated values Experimental values

no 1.6317 1.4988 1.4940 1.4980 1.4938
ne 1.5500 1.4417 1.4054 1.4292 1.4418
�11 (� mm�1) �30.39 +4.87 �11.65 +9.82 +19 (1)
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lated refractive indices. All models predict the correct optical

character. Models (i) and (iii) do not produce the correct sign

of optical rotation and the rotatory powers from models (ii)

and (iv) fall short of the experimental value. The failure of

model (iii) was expected: when inserting isotropic polariz-

ability volumes, the OPTACT formalism already takes care of

the directional dependence of the polarizability and produces

as output anisotropic polarizability volumes. Reinserting these

into the program results in divergent polarizabilities that after

a few iterations of this kind lead to a collapse of the calcula-

tions. Thus, inserting anisotropic polarizability volumes is not

advisable. In general, if the electron densities are known, their

use will effectively remove the uncertainty in polarizability

volume selection.

Models (ii) and (iv), however, cannot be generalized. For

the simple system of quartz, SiO2, for example, the Fourier

peak heights [a structure refinement yielded the Fourier

heights (a.u.) O2� 1251, Si4+ 3589] are opposite to the best fit

of polarizabilities to represent birefringence and optical

rotation [polarizability volumes (a.u.) O2� 1.2, Si4+ 0.2]. Here

we have to assume that !0 has shifted the polarizability values

considerably.

With the set of parameters for model (iv), we are able to

estimate higher optical properties based on the DES model

(see Appendix E). The results are summarized in Table 4.

The electro-optic coefficients are in the range of that of

other non-linear optical materials. Electrogyration is practi-

cally non-measurable in birefringent crystals and the values

found from calculation agree in size with previously discussed

results for other materials (Kaminsky, 2000b).

Of special interest here is the result for the d coefficients.

The value from numerous experimental determinations of the

d coefficients is 0.93 pm V�1 for d312 and 0.92 pm V�1 for d123

(Sifi et al., 2003), which agree well with our estimates in

Table 4. Taking into account that the birefringence has been

calculated fairly well from model (iv), the knowledge of the

average refractive index and the crystal structures are suffi-

cient to predict the extraordinary optical properties of CLBO.

APPENDIX A
Dipole–dipole interaction

Optical rotation may be calculated using the dipole–dipole

interaction theory and has been applied with success to ionic

crystals. This theory, based on electronic polarizabilities, is

described elsewhere (Beurskens-Kerssen et al., 1963; Bijvoet

et al., 1951; Born & Goeppert-Mayer, 1933; Bruhat & Grivet,

1935; Van Laar et al., 1968; Reijnhart, 1970). Here, we outline

the basic ideas behind the calculations.

Polarizability volumes were selected so that the dipole–

dipole model calculations were close to the refractive indices

derived experimentally. The cumulative effect of the dipole–

dipole interactions between all atoms in the crystal lattice

acting on an atom s in unit cell l at a position rl
s is described by

an electrical potential, V:

V ¼ Zl0
s0 ðrl

sÞ
¼ expð�i!tÞ

X
s0

ps0 expðikrl
sÞ

�
X

l0

exp½ikojrl
s � rl0

s0 j � ikðrl
s � rl0

s0 Þ�
4�"ojrl

s � rl0
s0 j

( )
; ð22Þ

where Z is the Hertz vector potential. The term in braces has

the periodicity of the lattice. The overall Hertz potential is

built from terms describing the frequency-dependent incident

wave, the interaction between all atoms in the unit cell and the

interaction between all unit cells in the lattice, respectively.

The electric field E(rl
s) at atom rl

s originating from the dipole

waves emanating from all other atoms (point dipoles) in the

structure is described by

Eðrl
sÞ ¼ grad div V� @2V

c2@t2
¼
X

s0
Ass0p

l
s0 ¼ ��1

s pl
s ð23Þ

where pl
s is the electronic polarization at position rl

s and �s is

the electronic polarizability volume of atom s. Ass0 is a matrix

of complex numbers. The imaginary part contained therein

describes the phase shifts that result in radiative interference

and optical rotation. When the sum of the contributions to the

electric field is then taken, the series converges only condi-

tionally. As a remedy, the function is decomposed into a

Fourier series that can be separated into two absolutely

convergent parts, one in real space and the other in reciprocal

space according to the Ewald theorem (Ewald, 1921).

A new matrix Css0 is defined from variables describing the

electric field E(rl
s):

Css0 ¼ ð��1
s �ss0 � Ass0 þ constÞ�1 ¼ ð��1

s �ss0 �Qss0 Þ�1; ð24Þ
the imaginary part of which is related to optical rotation.

Qss0 ¼ Q0
ss0 þ i

X
�

Q1
ss0k�;
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Table 4
Calculated non-linear optical properties of CLBO [experimental results from Sifi et al. (2003)].

Effect i,j,k Value i,j,k Value

Electro-optics: rijk/"r polar 123 = 213 �1.13 pm V�1 132 = 231 = 312 = 321 �1.02 pm V�1

Experiment n.a. n.a.
SHG: dijk polar 123 = 132 = 213 = 231 0.88 pm V�1 312 = 321 0.80 pm V�1

Experiment 0.92 pm V�1 0.93 pm V�1

Electrogyration: gijk/"r axial 132 = 312 = �231= �321 �3.4 mdeg V�1 n.a. n.a.
Experiment n.a.
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Q0
ss0 ¼ �

1

"0	R2

X0
h

h�h�G exp½ihðrs � rs0 Þ�

þ R3

4�"0

X
l0

H��ðRrl0
ss0 Þ þ ����ss0

R3

3"0�ð�1=2Þ ;

Q1
ss0 ¼ �

1

"0	R2

X0
h

"
ðh���� þ h����Þ

þ 2

R2
h�h�h�G0 exp½ihðrs � rs0 Þ

#

� R3

2�"0

X
l0

H��ðRrl0
ss0 Þrl0

ss0 ;

G ¼ expð�h2=R2Þ
h2=R2

; G0 ¼ @G=@k�;

H��ðxÞ ¼
x�x�

x2
 ðjxjÞ � ����ðjxjÞ;

 ðjxjÞ ¼ 3�ðjxjÞ þ 4 expð�jxj2Þ
�1=2

;

�ðjxjÞ ¼ 1

jxj3 erfcðjxjÞ þ 2 expð�jxj2Þ
�1=2

;

rl0
ss0 ¼ rl0 þ rs0 � rs: ð25Þ

Indices �, � and � refer to a Cartesian reference system and R

is a parameter chosen so as to ensure convergence. The term

corresponding to unit-cell index l0 = 0 with S = S0 is ignored in

the summation over l0. In the summation over the face-normal

vector h, the term h = (000) should be omitted.

The optical rotation �(k) and optical dielectric constants "ij

are derived as follows:

�ðkÞ ¼ �erijkr

2nv
Im
X

ss0
ðCss0 Þij; "ij ¼ �ij þ

1

	

X
ss0
ðCss0 Þij ð26Þ

(erij = Levi–Civita symbol, k = wavevector, n = average

refractive indices, v = unit volume and �ij = Kronecker delta).

The Levi–Civita operation erij accomplishes the cross product

between the spatial coordinates of Css 0 and the wavevector.

The dipole–dipole interaction distorts the polarizabilities of

the atoms resulting in an anisotropy described by the effective

polarizabilities �eff
s :

�eff
s ¼ Re

X
s0

Css0 : ð27Þ

This theoretical model reliably calculates optical rotation

on the basis of the interacting forces in inorganic structures. It

was further applied successfully to molecular crystals where

the interacting fields within a molecule are more significant

than those between the molecules (Kaminsky & Glazer, 1997,

1998). While progress has been made in the application of

quantum mechanics to the calculation of optical rotation in

molecules (Kondru et al., 1998), in crystals we have to choose a

theory that embodies long-range interactions and accom-

modates the periodicity.

APPENDIX B
Jones formalism of HAUP–TILTER equations

In TILTER- and HAUP-related experiments, the sample at

extinction angle �0 is placed between two orthogonal polar-

izers. The optical train explicitly written out for the TILTER

setup is represented by a string of matrices where A is the light

amplitude with rotation matrices for the polarizer (R�),

analyzer (RY), and sample (R�0
), and parasitic ellipticities of

polarizer and analyzer ( �RRp), ( �RRq):

A ¼ �RRt
qRt

Y

0 0

0 1

� �
RY

�RRqRt
�0

JR�0
R�

�RRp

1

0

� �
; ð28Þ

or alternatively for the HAUP setup

A ¼ �RRt
qRt

Y

0 0

0 1

� �
RY

�RRqRt
�JR�

�RRp

1

0

� �
ð29Þ

with

R� ¼
cos � � sin �

sin � cos �

� �
; RY ¼

cos � � sin �

sin � cos �

� �
;

R�0
¼ cos �0 � sin �0

sin �0 cos �0

� �
;

�RRq ¼
1 �iq

iq 1

� �
; �RRp ¼

1 �ip

ip 1

� �
;

ð30Þ

and

J ¼ expði�=2Þ ð2’=�Þ sinð�=2Þ
�ð2’=�Þ sinð�=2Þ expð�i�=2Þ

� �
; ð31Þ

representing OR (’) and linear birefringence (�).

Further details of the treatment including parasitic ellipti-

cities and the �Y error (misalignment of polarizer and

analyzer) are given elsewhere (Moxon & Renshaw, 1990;

Hernández-Rodriguez et al., 2000; Kaminsky, 1996, 1997a,b).

The result of these operations approximates to a bi-quadratic

polynomial that is normalized to the amplitudes of Y2:

I=I0 ¼ A A� ¼ a0 þ a1Y þ a2� þ a3�Y þ a4�
2 þ a5Y2: ð32Þ

When allowing for a misalignment of the kind Y = Y0 + �Y,

the polynomial transforms according to:

I=I0 ¼ b0 þ b1Y þ b2� þ b3Y� þ b4�
2 þ b5Y2; ð33Þ

where the bi coefficients are given by:

b1 ¼ a1 þ 2ð�YÞa4; b2 ¼ a2 þ ð�YÞa3;

b3 ¼ a3; b4 ¼ a4; b5 ¼ a5:
ð34Þ

The first term (b0) is the overall offset in the intensity

measurement. Parameters ’ and � are found from combina-

tions of the parameters bi.
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APPENDIX C
Double refraction and the TILTER method

The dependence of the phase with the tilt angle has to

distinguish two possible cases for the (100) plane of the CLBO

uniaxial crystal expressed analytically from the birefringence.

(i) Ordinary index (no) parallel to the tilter axis t (see

Fig. 10a). Consider a linearly polarized beam along the tilter

axis t, incident at an external angle �. The light beam splits

into two components (extraordinary and ordinary waves)

propagating with different velocities (Hartshorne & Stuart,

1964; Nye, 1985). The optical path for the extraordinary wave

is given by

nL= cos �e; ð35Þ
and for the ordinary wave (see Fig. 10a)

noL= cos �o þ nx ¼ noL= cos �o þ n sin �Lðtan�e � tan �oÞ;
ð36Þ

where n0 is the extraordinary wave refractive index, n is the air

refractive index, and �e and �o are the corresponding tilt angle

‘inside the sample’, defined according to

n sin � ¼ n sin �e ð37Þ
and

n sin � ¼ no cos�o: ð38Þ
The phase difference for the plate is given by

� ¼ 2�

�
L

no

cos �o

� n

cos�e

þ n sin �ðtan �e � tan�oÞ
� �

: ð39Þ

Introducing (37) and (38), the delay as a function of the angle

of incidence � is expressed as

� ¼ 2�

�
L no cos �o � n cos �eð Þ

¼ 2�

�
L ðn2

o � sin2 �Þ1=2 � ðn2 � sin2 �Þ1=2
� 	

: ð40Þ

The refractive index n0can be obtained from the dielectric

permeability normal to the direction of the wave normal,

1

n2
¼ cos2 �e

n2
e

þ sin2 �e

n2
o

; ð41Þ

which can be written using equation (37) as

n2 ¼ n2
e þ 1� n2

e

n2
o

� �
sin2 �: ð42Þ

Finally, equation (40) takes the form
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Figure 10
Wavevectors for double refraction in an optically uniaxial, negative crystal as a function of the tilt angle �, with the optic axis (a) parallel to the boundary
and parallel to the plane of incidence, (b) parallel to the boundary and perpendicular to the plane of incidence. Subscripts o and e stand for ordinary and
extraordinary waves, respectively, and n0 is the refractive index of the extraordinary wave.

Table 5
Observed and calculated Friedel differences for the CsLiB6O10 sample used in the optical rotation and X-ray anomalous scattering experiment.

The calculated differences (>5%) are based on the structural coordinates in Table 2.

h k l I(hkl) Iðk �hhlÞ �I/I observed (%) I/I calculated (%)

1 1 2 Not observed
3 2 3 14592 (282) 15901 (333) �8.6 (26) +15.06
4 3 1 6796 (120) 7163 (127) �5.3 (24) +15.64
4 1 3 20657 (321) 20962 (365) �1.5 (23) +5.54
2 2 4 39667 (1508) 34494 (991) +14.0 (45) �14.18
5 2 1 28248 (504) 27815 (600) +1.6 (28) �10.62
4 3 3 29829 (620) 32796 (694) �9.6 (29) �7.87
6 1 1 12544 (258) 13386 (287) �6.5 (30) �10.13
5 4 1 16781 (335) 17795 (369) �6.0 (29) 9.64
4 1 5 16494 (275) 16934 (443) �2.7 (25) �10.79
6 3 3 3067 (69) 3291 (63) �7.2 (28) 11.04
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� ¼ 2�

�
L n2

o � sin2 �
� �1=2� n2

e �
n2

e

n2
o

sin2 �

� �1=2
" #

: ð43Þ

(ii) Extraordinary index (ne) parallel to the tilter axis t (see

Fig. 10b). In this case, the situation is quite different because

the birefringence keeps constant through all the tilting scan.

By substituting n0 by ne in equation (40), one obtains

� ¼ 2�

�
L ðn2

o � sin2 �Þ1=2 � ðn2
e � sin2 �Þ1=2

� 	
: ð44Þ

APPENDIX D
Absolute indexing

The colorless crystal was mounted in random orientation on a

glass fiber on a Nonius Kappa CCD diffractometer, Mo K�
(� = 0.71073 Å). Cell constants and an orientation matrix for

data collections were obtained by least-squares refinements of

the diffraction data from more than 100 reflections. The

structure was solved by direct methods. Scattering factors are

from Waasmaier & Kirfel (1995). The structures were solved

with MaXus (Mackay et al., 1997); structure refinement was

carried out with SHELXL97 (Sheldrick, 1997). Table 5

represents the observed and calculated Friedel differences

based on the structural coordinates in Table 2.

The obtained structure agrees well with that of Tu et al.

(1995); however, our set of coordinates relate to Tu’s coordi-

nates by inversion of the y coordinates, i.e. with the set of

atomic coordinates of the cited paper as reference, one would

find clockwise optical rotation when looking towards the light

source along the b axis.

APPENDIX E
The DES model

Induced effects like the electro-optic effect, electrogyration or

second harmonic generation can be estimated roughly with

the dipole–dipole interaction model (Kaminsky & Glazer,

1997, 1998; Kaminsky et al., 1998; Claborn et al., 2002). The

basic idea is to calculate the shift between the electron cloud

and an atom nucleus in a crystal due to a simulated external

field, where the experimental values of the relative dielectric

constants " are used to find the local electric field (Eloc = local

field; Eexternal = applied electric field; P = polarization, "0 =

vacuum permeability):

E loc ¼ E external þ P

3"0

¼ ð"þ 2Þ
3

E external: ð45Þ

The shift x of the nuclei relative to the cloud for the kth atom

is derived from

xiðkÞ ¼
4�"0

e
�ijðkÞE loc

j ð46Þ

The tensor components of the non-linear effects follow from

the differences of the relative dielectric constants "ij, polar-

ization tensor aij and rotatory power �ij, calculated for

appropriate values of the external electric field E external
k :

"ijðE external
k Þ � "ijð0Þ ¼ 0:5dijkE external

k ðSHGÞ;

aijðE external
k Þ � aijð0Þ ¼ r"ijkE external

k

ðelectro-optic effect at constant strainÞ; ð47Þ

�ijðEexternal
k Þ � �ijð0Þ ¼ 180g"ijkEexternal

k =n�

ðelectrogyration at constant strainÞ:
Ionic polarizabilities of the atoms for static external electric

fields are not known and are approximated by the electronic

polarizabilities at optical frequencies.

Calculation of d coefficients with the DES model requires

inverting cause and action. The virtual crystal interacts with

incident light at the ground frequency and a polarization is

created through the virtually applied field. The polarizability

volumes for the long wavelength radiation are found from a

least-squares fit of calculated to experimental refractive

indices. The dielectric constant at optical frequencies is

derived from the squared refractive indices. The internal

tensor symmetry dijk = dikj (Kleinmann, 1962) is applied to the

calculated d coefficients.
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